Beheshti, M., Alikhani, H. A., Pourbabaee, A. A., Etesami, H., Asadi Rahmani, H. and Noroozi, M. (2022). Enriching periphyton with phosphate-solubilizing microorganisms improves the growth and Concentration Of Phosphorus And Micronutrients Of Rice Plant In Calcareous Paddy Soil. Rhizosphere 24: Doi:10.1016/J.Rhisph.2022.100590.
Bhattacharyya, C., Banerjee, S., Acharya, U., Mitra, A., Mallick, I., Haldar, A., Haldar. S., Ghosh, A. And Ghosh, A. (2020). Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci Rep. 10: doi:10.1038/S41598-020-72439-Z.
Devi, K., Sharma, D., Singh, R. and Pandey R. P. (2023). Screening and characterization of plant growth promoting rhizobacteria and their effect on growth and yield of barley (Hordeum vulgare L.). Crop Res. 58: 207-15. doi:10.31830/2454-1761.2023.CR-934.
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. and Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol, 10: doi:10.3389/fmicb.2019.02791.
Ganesh, J., Singh, V., Hewitt, K. and Kaundal, A. (2022). Exploration of the rhizosphere microbiome of native plant Ceanothus velutinus – An excellent resource of plant growth-promoting bacteria. Front. Plant Sci. 13: doi:10.3389/fpls.2022.979069.
Karnwal, A. (2021). Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates’ zinc biofortification in tomato. Int. J. Veg. Sci. 27: 398-412.
Keklik, G. (2023). Understanding evolutionary relationships and analysis methods through mega software. Int. J. New Hort. Sci. pp: 83-90.
Liu, Y., Yue, Z., Sun, Z. and Li, C. (2023). Harnessing native Bacillus spp. for sustainable wheat production. Appl. Environ. Microbiol. 89: doi:10.1128/aem.01247-22.
Lotfi, N., Soleimani, A., Çakmakçı, R., Vahdati, K. and Mohammadi, P. (2022). Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci. Rep. 12: doi:10.1038/s41598-022-16852-6.
Naorem, A., Jayaraman, S., Dang, Y. P., Dalal, R. C., Sinha, N. K., Rao, C. S. and Patra, A. K. (2023). Soil constraints in an arid environment—challenges, prospects and implications. Agronomy 13: doi:10.3390/agronomy13010220.
Pandey, R. P., Singh, P. K., Pundir, R. K., Srivastava, A. K., Gupta, V. K., Ramteke, P. W. and O’Donovan, A. (2023). Stress-tolerant plant growth-promoting Mesorhizobium ciceri isolates from mid-gangetic plains. Appl. Biochem. Microbiol. 59: 349-60. doi:10.1134 /S0003683823030146.
Pandey, R. P., Srivastava, A. K., Srivastava, A. K., and Ramteke, P. W. (2018a). Antibiotic resistance in Mesorhizobium ciceri from eastern Uttar Pradesh, India. Climate Change Environ. Sustain. 6: 114-18.
Pandey, R. P., Srivastava, A. K., Gupta, V. K., O’Donovan, A., and Ramteke, P. W. (2018b). Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri. Environ. Sustain. 1: 425-35. doi:10.1007/s42398-018-00039-9.
Rehman, A., Farooq, M., Naveed, M., Ozturk, L. and Nawaz, A. (2018). Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop Pasture Sci. 69: 659-72.
Roy, M. M. and Roy, S. (2019). Biodiversity in Thar desert and its role in sustainable agriculture. Flora Fauna 25: 103–20.
Shah, F. and Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11: doi:10.3390/su11051485.
Singh, J., Singh, A. V., Upadhayay, V. K., Khan, A. and Chandra, R. (2022) Prolific contribution of pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World J. Microbiol. Biotechnol. 38: doi:10.1007/s11274-022-03411-4.
Zhang, Q. and White, J. F. (2021). Bioprospecting desert plants for endophytic and biostimulant microbes: a strategy for enhancing agricultural production in a hotter, drier future. Biology 10: doi:10.3390/biology10100961.
Bhattacharyya, C., Banerjee, S., Acharya, U., Mitra, A., Mallick, I., Haldar, A., Haldar. S., Ghosh, A. And Ghosh, A. (2020). Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci Rep. 10: doi:10.1038/S41598-020-72439-Z.
Devi, K., Sharma, D., Singh, R. and Pandey R. P. (2023). Screening and characterization of plant growth promoting rhizobacteria and their effect on growth and yield of barley (Hordeum vulgare L.). Crop Res. 58: 207-15. doi:10.31830/2454-1761.2023.CR-934.
Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J. and Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol, 10: doi:10.3389/fmicb.2019.02791.
Ganesh, J., Singh, V., Hewitt, K. and Kaundal, A. (2022). Exploration of the rhizosphere microbiome of native plant Ceanothus velutinus – An excellent resource of plant growth-promoting bacteria. Front. Plant Sci. 13: doi:10.3389/fpls.2022.979069.
Karnwal, A. (2021). Pseudomonas spp., a zinc-solubilizing vermicompost bacteria with plant growth-promoting activity moderates’ zinc biofortification in tomato. Int. J. Veg. Sci. 27: 398-412.
Keklik, G. (2023). Understanding evolutionary relationships and analysis methods through mega software. Int. J. New Hort. Sci. pp: 83-90.
Liu, Y., Yue, Z., Sun, Z. and Li, C. (2023). Harnessing native Bacillus spp. for sustainable wheat production. Appl. Environ. Microbiol. 89: doi:10.1128/aem.01247-22.
Lotfi, N., Soleimani, A., Çakmakçı, R., Vahdati, K. and Mohammadi, P. (2022). Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Sci. Rep. 12: doi:10.1038/s41598-022-16852-6.
Naorem, A., Jayaraman, S., Dang, Y. P., Dalal, R. C., Sinha, N. K., Rao, C. S. and Patra, A. K. (2023). Soil constraints in an arid environment—challenges, prospects and implications. Agronomy 13: doi:10.3390/agronomy13010220.
Pandey, R. P., Singh, P. K., Pundir, R. K., Srivastava, A. K., Gupta, V. K., Ramteke, P. W. and O’Donovan, A. (2023). Stress-tolerant plant growth-promoting Mesorhizobium ciceri isolates from mid-gangetic plains. Appl. Biochem. Microbiol. 59: 349-60. doi:10.1134 /S0003683823030146.
Pandey, R. P., Srivastava, A. K., Srivastava, A. K., and Ramteke, P. W. (2018a). Antibiotic resistance in Mesorhizobium ciceri from eastern Uttar Pradesh, India. Climate Change Environ. Sustain. 6: 114-18.
Pandey, R. P., Srivastava, A. K., Gupta, V. K., O’Donovan, A., and Ramteke, P. W. (2018b). Enhanced yield of diverse varieties of chickpea (Cicer arietinum L.) by different isolates of Mesorhizobium ciceri. Environ. Sustain. 1: 425-35. doi:10.1007/s42398-018-00039-9.
Rehman, A., Farooq, M., Naveed, M., Ozturk, L. and Nawaz, A. (2018). Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop Pasture Sci. 69: 659-72.
Roy, M. M. and Roy, S. (2019). Biodiversity in Thar desert and its role in sustainable agriculture. Flora Fauna 25: 103–20.
Shah, F. and Wu, W. (2019). Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 11: doi:10.3390/su11051485.
Singh, J., Singh, A. V., Upadhayay, V. K., Khan, A. and Chandra, R. (2022) Prolific contribution of pseudomonas protegens in Zn biofortification of wheat by modulating multifaceted physiological response under saline and non-saline conditions. World J. Microbiol. Biotechnol. 38: doi:10.1007/s11274-022-03411-4.
Zhang, Q. and White, J. F. (2021). Bioprospecting desert plants for endophytic and biostimulant microbes: a strategy for enhancing agricultural production in a hotter, drier future. Biology 10: doi:10.3390/biology10100961.