Ali, A., Beshir, I. A. and Rahut, D. B. (2020). Adoption and impact of the maize hybrid on the livelihood of the maize growers: Some policy insights from Pakistan. Scientifica 2020: 1–8. doi:10.1155/2020/5959868.
Allwood, J. W., Martinez-Martin, P., Xu, Y., Cowan, A., Pont, S., Griffiths, I., Sungurtas, J., Clarke, S., Goodacre, R., Marshall, A., Stewart, D. and Howarth, C. (2021). Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years with targeted phenotyping and high-resolution metabolite profiling approaches. Food Chem. 355: doi:10.1016/j.foodchem.2021.129585.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24: 1–15.
Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–07.
Chakraborty, S. and Sen, R. S. (2024). Melatonin alleviates the toxic effects of lead by modulating the antioxidative properties in Plantago ovata seedlings. Acta Physiol. Plant. 46: doi:10.1007/s11738-023-03626-4.
El-Beltagi, H. S., Sulaiman, Mohamed, M. E. M., Ullah, S. and Shah, S. (2022). Effects of ascorbic acid and/or α-tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under drought condition. Agronomy 12: doi:10.3390/agronomy12102296.
Ghimire, K., McIntyre, I. and Caffe, M. (2024). Evaluation of morpho-physiological traits of oat (Avena sativa l.) under drought stress. Agriculture 14: doi:10.3390/agriculture14010109.
Gong, W., Ju, Z., Chai, J., Zhou, X., Lin, D., Su, W. and Zhao, G. (2022). Physiological and transcription analyses reveal the regulatory mechanism in oat (Avena sativa) seedlings with different drought resistance under peg-induced drought stress. Agronomy 12: doi:10.3390/agronomy12051005.
Gupta, S. K., Dey, R., Devi, S. and Raghuwanshi, R. (2024). Implications and adaptive responses in Avena sativa towards rhizospheric bacteria under drought stress. Microbe 4: doi:10.1016/j.microb.2024.100159.
Hiscox, J. D. and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332–34. doi.org/10.1139/b79-163.
Konieczna, W., Warchoł, M., Mierek-Adamska, A., Skrzypek, E., Waligórski, P., Piernik, A. and Dąbrowska, G. B. (2023). Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Sci. Rep. 13: doi:10.1038/s41598-023-29394-2.
Kutasy, E., Buday-Bódi, E., Virág, I. C., Forgács, F., Melash, A. A., Zsombik, L., Nagy, A. and Csajbók, J. (2021). Mitigating the negative effect of drought stress in oat (avena sativa l.) with silicon and sulphur foliar fertilization. Plants 11: doi:10.3390/plants11010030.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-75.
Lozano, Y, M., Aguilar‐Trigueros, C. A., Flaig, I. C. and Rillig, M. C. (2020). Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34: 2224–35. doi:10.1111/1365-2435.13656.
Megala, R., Kalarani, M. K., Jeyakumar, P., Senthil, N. and Pushpam, R. (2022). Exogenous melatonin application mitigates the adverse impact of drought stress at panicle initiation and anthesis stages in rice (Oryza sativa). Res. Crop. 23: 711-18.
Narula, S., Chaudhry, S. and Sidhu, G. P. S. (2022). Ameliorating abiotic stress tolerance in crop plants by metabolic engineering. In: Metabolic engineering in plants. Springer Nature. pp: 25–59. doi:10.1007/978-981-16-7262-0_2.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K., Ghimire, P., Ghimire, M., Rijal, A and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S., Cailleret, M., Kalin, K. C., Davi, H., Dupuy, J. L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D., Turco, M., Türkeş, M., Trigo, R., Vidal, J. P., Vilagrosa, A., Zribi, M. and Polcher, J. (2020). Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210: doi:10.1016/j.earscirev.2020.103348.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Xie, H., Li, M., Chen, Y., Zhou, Q., Liu, W., Liang, G. and Jia, Z. (2021). Important physiological changes due to drought stress on oat. Front. Ecol. Evol. 9: doi:10.3389/ fevo.2021.644726.
Xu, L., Zhu, Y., Wang, Y., Zhang, L., Li, L., Looi, L. J. and Zhang, Z. (2024). The potential of melatonin and its crosstalk with other hormones in the fight against stress. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1492036.
Yu, J., Luo, X., Zhou, Q., Li, Z. and Chen, S. (2024). Exogenous melatonin alleviates osmotic stress by enhancing antioxidant metabolism, photosynthetic maintenance, and hormone homeostasis in forage oat (Avena sativa) seedlings. Grasses 3: 190–204. doi:10.3390 /grasses3030014.
Zhang, X., Liu, W., Lv, Y., Bai, J., Li, T., Yang, X., Liu, L. and Zhou, H. (2022a). Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. Peer J. 10: doi: 10.7717/peerj.13669.
Zhang, X., Liu, W., Lv, Y., Li, T., Tang, J., Yang, X., Bai, J., Jin, X. and Zhou, H. (2022b). Effects of drought stress during critical periods on the photosynthetic characteristics and production performance of Naked oat (Avena nuda L.). Sci. Rep. 12: doi:10.1038/s41598-022-15322-3.
Allwood, J. W., Martinez-Martin, P., Xu, Y., Cowan, A., Pont, S., Griffiths, I., Sungurtas, J., Clarke, S., Goodacre, R., Marshall, A., Stewart, D. and Howarth, C. (2021). Assessing the impact of nitrogen supplementation in oats across multiple growth locations and years with targeted phenotyping and high-resolution metabolite profiling approaches. Food Chem. 355: doi:10.1016/j.foodchem.2021.129585.
Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in beta vulgaris. Plant Physiol. 24: 1–15.
Bates, L. S., Waldren, R. P. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant Soil 39: 205–07.
Chakraborty, S. and Sen, R. S. (2024). Melatonin alleviates the toxic effects of lead by modulating the antioxidative properties in Plantago ovata seedlings. Acta Physiol. Plant. 46: doi:10.1007/s11738-023-03626-4.
El-Beltagi, H. S., Sulaiman, Mohamed, M. E. M., Ullah, S. and Shah, S. (2022). Effects of ascorbic acid and/or α-tocopherol on agronomic and physio-biochemical traits of oat (Avena sativa L.) under drought condition. Agronomy 12: doi:10.3390/agronomy12102296.
Ghimire, K., McIntyre, I. and Caffe, M. (2024). Evaluation of morpho-physiological traits of oat (Avena sativa l.) under drought stress. Agriculture 14: doi:10.3390/agriculture14010109.
Gong, W., Ju, Z., Chai, J., Zhou, X., Lin, D., Su, W. and Zhao, G. (2022). Physiological and transcription analyses reveal the regulatory mechanism in oat (Avena sativa) seedlings with different drought resistance under peg-induced drought stress. Agronomy 12: doi:10.3390/agronomy12051005.
Gupta, S. K., Dey, R., Devi, S. and Raghuwanshi, R. (2024). Implications and adaptive responses in Avena sativa towards rhizospheric bacteria under drought stress. Microbe 4: doi:10.1016/j.microb.2024.100159.
Hiscox, J. D. and Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57:1332–34. doi.org/10.1139/b79-163.
Konieczna, W., Warchoł, M., Mierek-Adamska, A., Skrzypek, E., Waligórski, P., Piernik, A. and Dąbrowska, G. B. (2023). Changes in physio-biochemical parameters and expression of metallothioneins in Avena sativa L. in response to drought. Sci. Rep. 13: doi:10.1038/s41598-023-29394-2.
Kutasy, E., Buday-Bódi, E., Virág, I. C., Forgács, F., Melash, A. A., Zsombik, L., Nagy, A. and Csajbók, J. (2021). Mitigating the negative effect of drought stress in oat (avena sativa l.) with silicon and sulphur foliar fertilization. Plants 11: doi:10.3390/plants11010030.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-75.
Lozano, Y, M., Aguilar‐Trigueros, C. A., Flaig, I. C. and Rillig, M. C. (2020). Root trait responses to drought are more heterogeneous than leaf trait responses. Funct. Ecol. 34: 2224–35. doi:10.1111/1365-2435.13656.
Megala, R., Kalarani, M. K., Jeyakumar, P., Senthil, N. and Pushpam, R. (2022). Exogenous melatonin application mitigates the adverse impact of drought stress at panicle initiation and anthesis stages in rice (Oryza sativa). Res. Crop. 23: 711-18.
Narula, S., Chaudhry, S. and Sidhu, G. P. S. (2022). Ameliorating abiotic stress tolerance in crop plants by metabolic engineering. In: Metabolic engineering in plants. Springer Nature. pp: 25–59. doi:10.1007/978-981-16-7262-0_2.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K., Ghimire, P., Ghimire, M., Rijal, A and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Tramblay, Y., Koutroulis, A., Samaniego, L., Vicente-Serrano, S. M., Volaire, F., Boone, A., Le Page, M., Llasat, M. C., Albergel, C., Burak, S., Cailleret, M., Kalin, K. C., Davi, H., Dupuy, J. L., Greve, P., Grillakis, M., Hanich, L., Jarlan, L., Martin-StPaul, N., Martínez-Vilalta, J., Mouillot, F., Pulido-Velazquez, D., Quintana-Seguí, P., Renard, D., Turco, M., Türkeş, M., Trigo, R., Vidal, J. P., Vilagrosa, A., Zribi, M. and Polcher, J. (2020). Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth Sci. Rev. 210: doi:10.1016/j.earscirev.2020.103348.
Veronica, N., Sujatha, T. and Ramana Rao, P. V. (2022). Physiological characterization for abiotic stress tolerance in rice (Oryza sativa) genotypes. Crop Res. 57: 285-91.
Xie, H., Li, M., Chen, Y., Zhou, Q., Liu, W., Liang, G. and Jia, Z. (2021). Important physiological changes due to drought stress on oat. Front. Ecol. Evol. 9: doi:10.3389/ fevo.2021.644726.
Xu, L., Zhu, Y., Wang, Y., Zhang, L., Li, L., Looi, L. J. and Zhang, Z. (2024). The potential of melatonin and its crosstalk with other hormones in the fight against stress. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1492036.
Yu, J., Luo, X., Zhou, Q., Li, Z. and Chen, S. (2024). Exogenous melatonin alleviates osmotic stress by enhancing antioxidant metabolism, photosynthetic maintenance, and hormone homeostasis in forage oat (Avena sativa) seedlings. Grasses 3: 190–204. doi:10.3390 /grasses3030014.
Zhang, X., Liu, W., Lv, Y., Bai, J., Li, T., Yang, X., Liu, L. and Zhou, H. (2022a). Comparative transcriptomics reveals new insights into melatonin-enhanced drought tolerance in naked oat seedlings. Peer J. 10: doi: 10.7717/peerj.13669.
Zhang, X., Liu, W., Lv, Y., Li, T., Tang, J., Yang, X., Bai, J., Jin, X. and Zhou, H. (2022b). Effects of drought stress during critical periods on the photosynthetic characteristics and production performance of Naked oat (Avena nuda L.). Sci. Rep. 12: doi:10.1038/s41598-022-15322-3.