Ahmad, K., Ullah, A., Islam, B., Khan, M. A., Qadir, M. S., Saleem, S., Ahmad, I., Rehman, Z. U., Aslam, M. and Hussain, S. (2024). Identification of climate resilient genotypes on base of physio-morphic and yield related traits in maize (Zea mays L.). Biol. Clin. Sci. Res. J : doi:10. 54112/bcsrj.v2024i1.1267.
Basavaraj, P. S., Rane, J., Jangid, K. K., Babar, R., Kumar, M., Gangurde, A., Shinde, S., Boraiah, K. M., Harisha, C. B., Halli, H. and Reddy, K. S. (2025). Index-Based selection of Chickpea (Cicer arietinum L.) genotypes for enhanced drought tolerance. Sci. Rep. 15: doi:10.1038/s41598-025-93273-1.
Bonea, D. (2020). Screening for drought tolerance in maize hybrids using new indices based on resilience and production capacity. Sci. Papers Ser. Manag., Econom. Eng. Agric. Rural Dev. 20: 151-156.
Farshadfar, E., Mohammadi, R., Farshadfar. M. and Dabiri, S. (2013). Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. AJCS. 7: 130-198.
Fischer, R. and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian J. Agric. Res. 29: 897-912. doi.org/10.1071/AR9780897.
Glauber, J. and Anderson, W. (2024) Southern Africa drought: Impacts on maize production. Available at https://www.ifpri.org/blog/southern-africa-drought-impacts-maize-production/. Accessed 13 March 2025.
Hill, L., Becker, H. C. and Tigerstedt, P. M. A. (1998). Quantitative and ecological aspects of plant breeding. Chapman and Hall UK. pp. 67-83.
Khan, S. U., Zheng, Y., Chachar, Z., Zhang, X., Zhou, G., Zong, N., Leng, P. and Zhao, J. (2022). Dissection of Maize Drought Tolerance at the Flowering Stage Using Genome-Wide Association Studies. Genes. 13: doi:10.3390/genes13040564.
Khatibi, A., Omrani, S., Omrani, A., Shojaei, S. H., Mousavi, S. M. N., Illés, Á., Bojtor, C. and Nagy, J. (2022). Response of maize hybrids in drought-stress using drought tolerance indices. Water 14: doi:10.3390/w14071012.
Kim, K. H. and Lee, B. M. (2023). Effects of climate change and drought tolerance on maize growth. Plants. 12: doi:10.3390/plants12203548.
Lawal, O. O., Ajiboye, O. T., Adelodun, L. B. and Ibrahim, U. Y. (2020). Yield potential and variability studies in early-maturing soybean (Glycine max L.) under terminal drought prone condition. Crop Res. 55: 100-06.
Liang, L., Geng, D., Yan, J., Qiu, S., Di, L., Wang, S., Xu, L., Wang, L., Kang, J. and Li, L. (2020). Estimating crop LAI using spectral feature extraction and the hybrid inversion method. Remote Sens. 12: doi:10.3390/rs12213534.
Paul Lutschak, Bekzak Amantayev, Gulden Kipshakbayeva, Gani Stybayev, Meisam Zargar, Dmitriy Ebzeev and Meysam Soltani Nejad (2024). Enhancing drought resistance in early-stage development of spring soft wheat (Triticum aestivum L.) using trace elements in a dry steppe zone. Res. Crop. 25: 394-402.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K., Ghimire, P., Ghimire, M., Rijal, A. and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M. and Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Sci Rep, 10: doi:10.1038/s41598-020-59689-7.
Shao, R., Jia, S., Tang, Y., Zhang, J., Li, H., Li, L., Chen, J., Guo, J., Wang, H., Yang, Q., Wang, Y., Liu, T. and Zhao, X. (2021). Soil water deficit suppresses the development of maize ear by altering metabolism and photosynthesis. Enviro. Exper. Bot 192: doi:10.1016/ j.envexpbot.2021.104651.
Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S. and Kumar, R. (2022). Recent advances for drought stress tolerance in maize (Zea mays L.): Present status and prospects. Front. Plant Sci. 13: doi:10.3389/fpls.2022.872566.
Silva, P. C., Sanchez, A. C., Opazo, M. A., Mardones, L. A. and Acevedo, E. A. (2022). Grain yield, anthesis-silking interval, and phenotypic plasticity in response to changing environments: Evaluation in temperate maize hybrids. Field Crops Res. 285: doi:10.1016/j.fcr.2022.108583.
Song, X., Zhou, G. and He, Q. (2021). Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering. Sustain. 13: doi:10.3390/su13137218.
Spitkó, T., Nagy, Z., Zsubori, Z. T., Halmos, G., Bányai, J. and Marton, C. L. (2014). Effects of drought on yield components of maize hybrids (Zea mays L.) Maydica. 59: 161-169.
Basavaraj, P. S., Rane, J., Jangid, K. K., Babar, R., Kumar, M., Gangurde, A., Shinde, S., Boraiah, K. M., Harisha, C. B., Halli, H. and Reddy, K. S. (2025). Index-Based selection of Chickpea (Cicer arietinum L.) genotypes for enhanced drought tolerance. Sci. Rep. 15: doi:10.1038/s41598-025-93273-1.
Bonea, D. (2020). Screening for drought tolerance in maize hybrids using new indices based on resilience and production capacity. Sci. Papers Ser. Manag., Econom. Eng. Agric. Rural Dev. 20: 151-156.
Farshadfar, E., Mohammadi, R., Farshadfar. M. and Dabiri, S. (2013). Relationships and repeatability of drought tolerance indices in wheat-rye disomic addition lines. AJCS. 7: 130-198.
Fischer, R. and Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian J. Agric. Res. 29: 897-912. doi.org/10.1071/AR9780897.
Glauber, J. and Anderson, W. (2024) Southern Africa drought: Impacts on maize production. Available at https://www.ifpri.org/blog/southern-africa-drought-impacts-maize-production/. Accessed 13 March 2025.
Hill, L., Becker, H. C. and Tigerstedt, P. M. A. (1998). Quantitative and ecological aspects of plant breeding. Chapman and Hall UK. pp. 67-83.
Khan, S. U., Zheng, Y., Chachar, Z., Zhang, X., Zhou, G., Zong, N., Leng, P. and Zhao, J. (2022). Dissection of Maize Drought Tolerance at the Flowering Stage Using Genome-Wide Association Studies. Genes. 13: doi:10.3390/genes13040564.
Khatibi, A., Omrani, S., Omrani, A., Shojaei, S. H., Mousavi, S. M. N., Illés, Á., Bojtor, C. and Nagy, J. (2022). Response of maize hybrids in drought-stress using drought tolerance indices. Water 14: doi:10.3390/w14071012.
Kim, K. H. and Lee, B. M. (2023). Effects of climate change and drought tolerance on maize growth. Plants. 12: doi:10.3390/plants12203548.
Lawal, O. O., Ajiboye, O. T., Adelodun, L. B. and Ibrahim, U. Y. (2020). Yield potential and variability studies in early-maturing soybean (Glycine max L.) under terminal drought prone condition. Crop Res. 55: 100-06.
Liang, L., Geng, D., Yan, J., Qiu, S., Di, L., Wang, S., Xu, L., Wang, L., Kang, J. and Li, L. (2020). Estimating crop LAI using spectral feature extraction and the hybrid inversion method. Remote Sens. 12: doi:10.3390/rs12213534.
Paul Lutschak, Bekzak Amantayev, Gulden Kipshakbayeva, Gani Stybayev, Meisam Zargar, Dmitriy Ebzeev and Meysam Soltani Nejad (2024). Enhancing drought resistance in early-stage development of spring soft wheat (Triticum aestivum L.) using trace elements in a dry steppe zone. Res. Crop. 25: 394-402.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K., Ghimire, P., Ghimire, M., Rijal, A. and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Sah, R. P., Chakraborty, M., Prasad, K., Pandit, M., Tudu, V. K., Chakravarty, M. K., Narayan, S. C., Rana, M. and Moharana, D. (2020). Impact of water deficit stress in maize: Phenology and yield components. Sci Rep, 10: doi:10.1038/s41598-020-59689-7.
Shao, R., Jia, S., Tang, Y., Zhang, J., Li, H., Li, L., Chen, J., Guo, J., Wang, H., Yang, Q., Wang, Y., Liu, T. and Zhao, X. (2021). Soil water deficit suppresses the development of maize ear by altering metabolism and photosynthesis. Enviro. Exper. Bot 192: doi:10.1016/ j.envexpbot.2021.104651.
Sheoran, S., Kaur, Y., Kumar, S., Shukla, S., Rakshit, S. and Kumar, R. (2022). Recent advances for drought stress tolerance in maize (Zea mays L.): Present status and prospects. Front. Plant Sci. 13: doi:10.3389/fpls.2022.872566.
Silva, P. C., Sanchez, A. C., Opazo, M. A., Mardones, L. A. and Acevedo, E. A. (2022). Grain yield, anthesis-silking interval, and phenotypic plasticity in response to changing environments: Evaluation in temperate maize hybrids. Field Crops Res. 285: doi:10.1016/j.fcr.2022.108583.
Song, X., Zhou, G. and He, Q. (2021). Critical Leaf Water Content for Maize Photosynthesis under Drought Stress and Its Response to Rewatering. Sustain. 13: doi:10.3390/su13137218.
Spitkó, T., Nagy, Z., Zsubori, Z. T., Halmos, G., Bányai, J. and Marton, C. L. (2014). Effects of drought on yield components of maize hybrids (Zea mays L.) Maydica. 59: 161-169.