Loading...

Impact of Meloidogyne javanica infection on nutrient element accumulation in sweet potato cultivar ‘Blesbok’ 

Citation :- Impact of Meloidogyne javanica infection on nutrient element accumulation in sweet potato cultivar ‘Blesbok’. Res. Crop. 26: 690-697
P. W. MASHELA AND K. M. POFU Phatu.mashela@ul.ac.za
Address : University of Limpopo, Green Biotechnologies Research Centre of Excellence, Department of Plant Production, Soil Science and Agricultural Engineering, Private BagX1106, Sovenga 0727 South Africa
Submitted Date : 15-03-2025
Accepted Date : 11-12-2025

Abstract

Sweet potato (Ipomoea batatas L.) is a valuable staple crop rich in essential nutrients such as iron (Fe), potassium (K), magnesium (Mg), and calcium (Ca). However, root-knot nematodes (Meloidogyne spp.), particularly Meloidogyne javanica (Treub) Chitwood, pose a significant threat to its productivity by affecting nutrient uptake. Despite the global prevalence of M. javanica, there is inconsistent information on its impact on the nutrient composition of sweet potato leaves. This study aimed to assess the response of selected nutrient elements (Ca, K, Mg, Fe, and Zn) in the leaf tissues of sweet potato cultivar ′Blesbok' infected by M. javanica at the University of Limpopo, South Africa, using a randomized complete block design with six replications. Seven M. javanica inoculation levels (0, 5, 25, 125, 625, 3125, and 15,625 eggs + second-stage juveniles (J2) were applied to the sweet potato plants. Nutrient element concentrations in the leaves were analysed using Inductively Coupled Plasma Optical Emission Spectrometry after a microwave digestion process. Independent variables (x-axis) were log-transformed for normality and subjected to analysis of variance, with multiple regression analysis performed. Negative quadratic relationships were observed for Ca, K, Mg and Fe, with inhibited concentrations at low nematode densities and stimulated ones at higher levels. However, Zn responded with a positive quadratic trend, indicating gradual decline under lower nematode stress. Optimal levels of Ca, K, Mg and Fe occurred at lower nematode population densities, whereas Zn accumulation peaked at higher infestation levels. In conclusion, the study confirmed that M. javanica infection disrupts nutrient accumulation in sweet potato, leading to nematode density-specific responses. Managing nematode population densities to lower levels may help to maintain optimal nutrient concentrations. The findings provide insights into the nutritional impact of nematode infections and can inform integrated nematode management strategies for sustainable sweet potato production.

Keywords

Meloidogyne javanica nematode infection nutrient uptake plant nutrition root-knot nematodes sweet potato

References

Atungwu, J. J., Ozuzu, L. and Tijjani, I. (2013). Categorization of 10 sweet potato (Ipomoea batatas) varieties for resistance to Meloidogyne spp. in organic field conditions. Arch. Phytopathol. Plant Protec. 46: 253-60.
Bessa, L. A., Moreira, M. A., Silva, F. G., Mota, C. S. and Vitorino, L. C. (2016). Growth, nutrient concentration, and principal component analysis of Eugenia dysenterica seedlings grown in nutrient solution. Australian J. Crop Sci. 10: 425-33.
Bouis, H. E., Hotz, C., McClafferty, B., Meenakshi, J. V. and Pfeiffer, W. H. (2017). Biofortification: A new tool to reduce micronutrient malnutrition. Food Nutr. Bull. 32: 31-40.
Causton, D. R. (1977). A Biologist’s Mathematics: Contemporary Biology. Arnold, 25 Hill Street, London. pp. 326.
Cervantes-Flores, J. C., Yencho, G. C. and Davis, E. L. (2002). Host reactions of sweet potato genotypes to root-knot nematodes and variation in virulence of Meloidogyne populations. Hort. Sci. 37: 1112-16.
Coyne, D. L., Cortada, L., Dalzell, J. J., Claudius-Cole, A. O., Haukeland, H., Luambano, N. and Talwana, H. (2018). Plant-parasitic nematodes and food security in Sub-Saharan Africa. Annu. Rev. Phytopathol. 56: 381-403.
Elling, A. A. (2013). Major emerging problems with minor Meloidogyne species. Phytopathol. 103: 1092-1102.
Fatemy, F. and Evans, K. (1986). Growth, water uptake, and calcium content of potato cultivars in relation to tolerance of cyst nematodes. Rev. Nematol. 9: 171-79.
Gapasin, R. M. (1981). Control of Meloidogyne incognita and Rotylenchulus reniformis and its effect on the yield of sweet potato and cassava. Annu. Trop. Res. 3: 92-100.
Gheysen, G. and Fenoll, C. (2022). Gene expression in nematode feeding sites. Annu. Rev. Phytopathol. 40: 191-219.
Grotz, N. and Guerinot, M. L. (2022). Molecular aspects of Cu, Fe, and Zn homeostasis in plants. BBA 1763: 595-608.
Huang, C. S. (2022). Formation, anatomy, and physiology of giant cells induced by root-knot nematodes. Annu. Rev. Phytopathol. 60: 82-99.
Hussey, R. S. and Barker, K. R. (1973). A comparison of methods for collecting inocula of Meloidogyne spp. including a new technique. Plant Dis. Rep. 42: 865-72.
Karuri, H. W., Olago, D., Neilson, R., Mararo, E. and Villinger, J. (2017). A survey of root-knot nematodes and resistance to Meloidogyne incognita in sweet potato varieties from Kenyan fields. Crop Protec. 92: 114-21.
Kleynhans, K. P. N. (1991). The Root-knot Nematodes of South Africa. Technical Communication - Department of agricultural development, South Africa No. 231. Contact EPPO · EPPO Website. pp. 61.
Kleynhans, K. P. N., Van der Berg, E., Swart, A., Marais, M., Buckley, N. H. (1996). Plant Nematodes in South Africa. PPRI Handbook no. 8. Pretoria: Plant Protection Research Institute, Biosystematics Division, National Collection of Nematodes, South Africa. pp. 165.
Laurie, S. M., Faber, M., Adebola, P. and Belete, A. (2015). Biofortification of sweet potato for food and nutrition security in South Africa. Food Res. Intern. 76: 962-70.
Laurie, S., Calitz, F., Mtileni, M., Mphela, W. and Tlale, S. (2022). Performance of informal market sweet potato cultivars in on-farm trials in South Africa. Open Agric. 7: 431-41.
Liu, D. L., An, M., Johnson, I. R. and Lovett, J. V. (2003). Mathematical modelling of allelopathy. III. A model for curve-fitting allelochemical response dose. Nonlin. Biol. Toxicol. Med. 1: 37-50.
Malekaberham, H. (1998). Effects of temperature and nitrogen sources on tomato genotypes' response to Meloidogyne incognita infection. Fund. Appl. Nematol. 21: 25-32.
Marais, M., Swart, A., Fourie, H., Shauwn, D. B. Rinus, K. and Malan, A. P. (2017). Techniques and Procedures. In: Nematology in South Africa: A View From the 21st Century (Eds.) Fourie, H., Spaull, V. W., Jones, R. K., Daneel, M. S. and de Waele, D.). Springer, Cham. pp. 73-117.
Mashela, P. W. and Nthangeni, M. E. (2002). Osmolyte allocation in response to Tylenchulus semipenetrans infection, stem girdling, and root pruning in citrus. J. Nematol. 34: 273-77.
Moens, M., Perry, R. N. and Starr, J. L. (2009). Meloidogyne species – A diverse group of novel and important plant-parasites. In: Root-knot nematodes (Eds. Perry, R. N., Moens, M. and Starr, J. L.). CAB International: Wallingford, UK. pp. 1-20.
Onkendi, M. E., Kariuki, G. M., Marais M. and Moleleki, L. N. (2014). The threat of root-knot nematodes (Meloidogyne spp.) in Africa. Plant Pathol. 64: 727-60.
Osei, E., Kwoseh, C., Afuakwa, J.  J. and Oppong, A. (2022). Host response of sweet potato varieties to root-knot nematodes in Ghana. Int. J. Agric. Biol. 24: 345-54.
Pofu, K. M., Mashela, P. W., Laurie, S. M. and Oelofse, D. (2017). Host-status of sweet potato cultivars to South African root-knot nematodes. Acta Agric. Scand. Section -B Plant Soil. 67: 62-66.
Remans, T., Opdenakker, K., Guisez, Y., Carleer, R., Schat, H., Vangronsveld. J. and Cuypers, A. (2012). Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ. Exp. Bot. 84 61-71. doi:10.1016/j.envexpbot. 2012.05.005.
 SAS Institute (2008). Statistical Analysis Systems Computer Package. SAS Institute Inc., Cary, New York.
Siddique, S., Matera, C., Radakovic, Z. S., Hasan, M. S., Gutbrod, P., Rozanska, E., Sobczak, M., Torres, M. A. and  Grundler, F. M. W.  (2014). Parasitic worms stimulate host NADPH oxidases to produce reactive oxygen species. Sci. Sign. 7: doi:10.1126/ scisignal.2004777.
Taylor, A. L. and Sasser, J. N. (1978). Biology, Identification and Control of Root-knot Nematodes (Meloidogyne species). North Carolina State University Press: Raleigh. North Carolina, USA. pp. 111.
Wang, N., Chen, Z., Lv, J., Li, T., Wu, H., Wu, J., Wu, H. and Xiang, W-z. (2023). Characterization, hypoglycemia and antioxidant activities of polysaccharides from Rhodosorus sp. SCSIO-45730. Ind. Crop. Prod191: 115936-48.  doi:10.1016/ j.indcrop.2022.115936.
 
 

Global Footprints