Loading...

Interplay of hydrogen peroxide and nitric oxide in enhancing antioxidant defense under chromium (VI) toxicity in tomato


Citation :- Interplay of hydrogen peroxide and nitric oxide in enhancing antioxidant defense under chromium (VI) toxicity in tomato. Res. Crop. 26: 659-667
TUBA TAZIUN, RITU KUMARI, SUFIYA JAN AND BILQUES FAROOQ bilquesfarooq123@gmail.com
Address : Department of Botany, Lovely Professional University, Phagwara - 144411, Punjab, India
Submitted Date : 10-07-2025
Accepted Date : 6-10-2025

Abstract

Chromium [Cr (IV)] toxicity poses a serious threat to plant health by inducing oxidative stress and disrupting physiological processes. Tomato (Solanum lycopersicum) is a vital annual vegetable crop grown globally in 5 million hectares of land. Additionally, tomatoes are highly susceptible to a range of abiotic stressors, particularly metal stress, which highlights the need to investigate how metal stress impacts their morphological and biochemical characteristics. In view of this, the current study was carried from April 2023 to June 2024 at Lovely Professional University, Phagwara, Punjab, India, to evaluate the impact of Cr(VI) stress and the mitigating roles of hydrogen peroxide (H₂O₂) and nitric oxide (NO) on tomato seedlings grown hydroponically. The findings indicated that exposure to 20 µM Cr(VI) for seven days resulted in a significant decrease in total chlorophyll (27.17%) and carotenoid (19.62%) contents as compared to the control ones. Additionally, the activities of key antioxidant enzymes, including glutathione reductase (GR), ascorbate peroxidase (APX), catalase (CAT), and superoxide dismutase (SOD) were affected, suggesting impairment of the photosynthetic system and redox balance. However, exogenous supplementation of H2O2 (1 µM) and NO (25 µM) considerably diminished these negative effects by restoring pigment levels and augmenting antioxidant enzyme activities. The protective role of H2O2 was negated by the supplementation of NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide)) and the NOS (Nitric Oxide Synthase) inhibitor L-NAME (N-Nitro-L-arginine methyl ester, suggesting that H2O2- mediated stress tolerance operates via NO-dependent signaling pathways. Conversely the application of ROS (Reactive Oxygen Species) inhibitors such as DPI (Diphenyleneiodonium) and NAC (N-acetyl-L-cysteine) had minimal impact on NO’s protective function. Further, supporting a synergistic interaction between H2O2 and NO in conferring chromium stress tolerance in tomato seedlings.

Keywords

Antioxidant enzymes chromium stress hydrogen peroxide nitric oxide oxidative stress tomato total chlorophyll

References

Aebi, H. (1984). Catalase in vitro. In Methods in enzymology. Academic press. 105: 121-26.
Basit, F., Bhat, J. A., Dong, Z., Mou, Q., Zhu, X., Wang, Y. and Ahmad, P. (2022). Chromium toxicity induced oxidative damage in two rice cultivars and its mitigation through external supplementation of brassinosteroids and spermine. Chemosphere 302: doi:10.1016/j. chemosphere.2022.134423.
Bücker-Neto, L., Paiva, A. L. S., Machado, R. D., Arenhart, R. A. and Margis-Pinheiro, M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Biol. 40 (Suppl. 1): 373-86.
Carlberg, I. and Mannervik, B. (1985). Glutathione reductase. In: Methods in enzymology 113: 484-90.
Fatma, M., Masood, A., Per, T. S. and Khan, N. A. (2016). Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front.  Plant Sci. 7: doi:10.3389/fpls.2016.00521.
Gautam, M., Singh, A. K. and Johri, R. M. (2014). Effect of chromium toxicity on growth, chlorophyll and some macronutrients of Solanum lycopersicum and Solanum melongena. Indian J. Agric. Sci84: 1115-23.
Goupil, P., Souguir, D., Ferjani, E., Faure, O., Hitmi, A. and Ledoigt, G. (2009). Expression of stress-related genes in tomato plants exposed to arsenic and chromium in nutrient solution. J. Plant Physiol. 166: 1446-52.
Hossain, M. A., Bhattacharjee, S., Armin, S. M., Qian, P., Xin, W., Li, H. Y., Burritt, D. J., Fujita, M. and Tran, L. S. P. (2015). Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front. Plant Sci. 6: doi:10.3389/fpls.2015.00420.
Imran, M., Hussain, S., Iqbal, A., Saleem, M. H., Rehman, N., Mo, Z., Chen, Z. and Tang, X. (2023). Nitric oxide confers cadmium tolerance in fragrant rice by modulating physio-biochemical processes, yield attributes, and grain quality traits. Ecotoxicol. Environ. Safety 261doi:10.1016/j.ecoenv.2023.115078.
Iskra, R. Y. and Fedoruk, R. S. (2022). Chromium, its properties, transformation, and impact on humans. Physiol. J. 68: 89-97. doi:10.15407/fz68.04.089.
Kaya, C., Polat, T., Ashraf, M., Kaushik, P., Alyemeni, M. N. and Ahmad, P. (2021). Endogenous nitric oxide and its potential sources regulate glutathione-induced cadmium stress tolerance in maize plants. Plant Physiol. Biochem. 167: 723-37.
Khatua, S. and Kumar Dey, S. (2023). The chemistry and toxicity of chromium pollution: an overview. Asian J. Agric. Hortic.l Res. 10: 1-14.
Kono, Y., Takahashi, M. A. and Asada, K. (1979). Superoxide dismutases from kidney bean leaves. Plant Cell Physiol. 20: 1229-35.
Kumari, R., Kapoor, P., Mir, B. A., Singh, M., Parrey, Z. A., Rakhra, G., Parihar, P., Khan, M. N. and Rakhra, G. (2024). Unlocking the versatility of Nitric Oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide. 150: 1-17. doi:10.1016/j.niox.2024.07.002.
Kumari, R., Khan, M. N., Parrey, Z. A., Kapoor, P., Mir, B. A., Taziun, T., Parihar, P. and Rakhra, G. (2025). Synergistic effects of hydrogen sulfide and nitric oxide in enhancing salt stress tolerance in cucumber seeding.  Physiol. Plant. 177: doi.org/10.1111/ppl.70109.
Kumari, R., Rakhra, G., Alsahli, A. A., Bhat, J. A. and Ahmad, P. (2025). Exploring the potential of signaling molecules hydrogen sulfide and nitric oxide in augmenting salt stress resilience in bitter gourd. BMC Plant Biol. 25: 1-14.
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic bio-membranes. Methods Enzymol. 148: 350–82.
Liu, L., Huang, L., Sun, C., Wang, L., Jin, C. and Lin, X. (2021). Cross-talk between hydrogen peroxide and nitric oxide during plant development and responses to stress. J. Agric. Food Chem. 69: 9485-97.
Monga, A., Fulke, A. B. and Dasgupta, D. (2022). Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies. J. Hazard. Mater. Adv. 7: doi:10.1016/j.hazadv.2022.100113.
Nakano, Y. and Asada, K. (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-80.
Nawaz, M., Saleem, M. H., Khalid, M. R., Ali, B. and Fahad, S. (2024). Nitric oxide reduces cadmium uptake in wheat (Triticum aestivum L.) by modulating growth, mineral uptake, yield attributes, and antioxidant profile. Environ. Sci. Pollu. Res. 31: 9844-56.
Nazir, F., Fariduddin, Q. and Khan, T. A. (2020). Hydrogen peroxide as a signalling molecule in plants and its crosstalk with other plant growth regulators under heavy metal stress. Chemosphere 252: doi:10.1016/j.chemosphere.2020.126486.
Parbhakar, M., Guleria, P. and Kumar, V. (2025). Hydroponically exposed lead nitrate influenced growth, antioxidant and oxidative dynamics of cucumber (Cucumis sativus). Crop Res. 60: 53-60.
Raja, V., Qadir, S. U., Kumar, N., Alsahli, A. A., Rinklebe, J. and  Ahmad, P. (2023). Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol Biochem. 2023: doi:10.1016/j.plaphy.2023.107872. 
Rashid, A., Schutte, B. J., Ulery, A., Deyholos, M. K., Sanogo, S., Lehnhoff, E. A. and Beck, L. (2023). Heavy metal contamination in agricultural soil: environmental pollutants affecting crop health. Agronomy 13: doi:10.3390/agronomy13061521.
Rysbaeva, Y., Lesova, Z., Akhmetova, A., Ayla, K. and Meiirman, S. (2025). Impact of various plant extracts on heavy metal uptake in wheat (Triticum aestivum L.). Res. Crop. 26: 438-43.
Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M. and Hasanuzzaman, M. (2021). Abiotic stress and reactive oxygen species: Generation, signaling, and defense mechanisms. Antioxidants 10: doi:10.3390/antiox10020277.
Saud, S., Wang, D., Fahad, S., Javed, T., Jaremko, M., Abdelsalam, N. R. and Ghareeb, R. Y. (2022). The impact of chromium on stress on plant growth, developmental physiology, and molecular regulation. Front. Plant Sci. 13: doi:10.3389/fpls.2022.994785.
Singh, D., Sharma, N. L., Singh, D., Siddiqui, M. H., Taunk, J., Sarkar, S. K., Rathore, A., Singh, C. K., Al-Amri, A. A., Alansi, A., Ali, H. M. and Rahman, M. A. (2023). Exogenous hydrogen sulfide alleviates chromium toxicity by modulating chromium, nutrients and reactive oxygen species accumulation, and antioxidant defence system in mungbean (Vigna radiata L.) seedlings. Plant Physiol. Biochem. 200: doi:10.1016/j.plaphy.2023.107767.
Singh, S., Dubey, N. K. and Singh, V. P. (2022). Nitric oxide and hydrogen peroxide independently act in mitigating chromium stress in Triticum aestivum L. seedlings: Regulation of cell death, chromium uptake, antioxidant system, sulfur assimilation and proline metabolism. Plant Physiol. Biochem. 183: 76-84.
Singh, V. P. and Maiti, R. K. (2022). A review on mineral nutrition of potato (Solanum tuberosum L.). Farm. Manage. 7: 93-109.
Wakeel, A., Xu, M. and Gan, Y. (2020). Chromium-induced reactive oxygen species accumulation by altering the enzymatic antioxidant system and associated cytotoxic, genotoxic, ultrastructural, and photosynthetic changes in plants. Int. J. Mol. Sci.21: doi:10.3390/ijms21030728.
Wang, W., Wang, X., Huang, M., Cai, J., Zhou, Q., Dai, T. and Jiang, D. (2021). Alleviation of field low-temperature stress in winter wheat by exogenous application of salicylic acid. J. Plant Growth Regul. 40: 811-23.
Wani, K. I., Naeem, M., Castroverde, C. D. M., Kalaji, H. M., Albaqami, M. and Aftab, T. (2021). Molecular mechanisms of nitric oxide (NO) signaling and reactive oxygen species (ROS) homeostasis during abiotic stresses in plants. Int. J. Mol. Sci. 22: doi:10.3390/ijms22179656.

Global Footprints