Loading...

Cellular responses of fenugreek (Trigonella foenum-graecum L.) to drought stress and chemical mutagenesis under in vitro conditions



Citation :- Cellular responses of fenugreek (Trigonella foenum-graecum L.) to drought stress and chemical mutagenesis under in vitro conditions. Res. Crop. 26: 728-735
TUQA R. N. AL-SHARAI, SHATHA AYED YOUSIF AND ZIYAD A. ABED ziyad.ismael@coagri.uobaghdad.edu.iq
Address : Department of Field Crops, College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq
Submitted Date : 9-09-2025
Accepted Date : 14-10-2025

Abstract

Fenugreek possesses significant nutritional and medicinal value, yet its productivity is constrained by drought stress. Understanding cellular responses under in vitro conditions is essential to elucidate mechanisms of stress tolerance and improve sustainable cultivation. The experiment was conducted during 2022-2023 growing season to study the effect of drought stress levels 0 and 1% polyethylene glycol (PEG), and chemical mutation sodium azide (SA) on fenugreek in vitro. Fenugreek seeds were mutated using SA (0, 0.5 and 1 mM). A factorial experiment was conducted with three replicates, where the first factor was the concentrations of SA, while the second factor was the levels of PEG After one month, assessments were conducted for proline and carbohydrate accumulation, diosgenin content, as well as the activities of peroxidase and catalase enzymes. There was a significant effect of SA as average on all studied traits except for proline accumulation, carbohydrate, and recording 8.11, 6.38, and 4.93 mg glucose/g dry weight at 0-, 0.5-, and 1-mM SA, respectively. while diosgenin concentration and the activity of catalase and peroxidase increased in the presence of the SA. As for the effect of PEG as an average, the result revealed no significant effect on proline and carbohydrate accumulation and the activity of catalase and peroxidase, while diosgenin increased in the presence of PEG. Interaction between SA and PEG revealed a significant effect on carbohydrate and diosgenin accumulation and the activity of catalase and peroxidase, as carbohydrates decreased with increasing PEG concentrations in 0- and 0.5- mM SA.

Keywords

Drought fenugreek in vitro mutation

References

Adhab, M. (2021). Be smart to survive: virus-host relationships in nature. J. Microbiol. Biotechnol. Food Sci. 10: doi:10.15414/jmbfs.3422.
Al-Ani, R. A., Adhab, M. A. and Diwan, S. N. (2011). Systemic resistance induced in potato plants against Potato virus Y common strain (PVYO) by plant extracts in Iraq. Adv.  Environ. Biol. 5: 209-15.
Alessandrello, C., Sanfilippo, S., Gangemi, S., Pioggia, G. and Minciullo, P. L. (2024). Fenugreek: New Therapeutic Resource or Emerging Allergen? Appl. Sci. 14:  doi:10.3390/app14209195.
Alogaidi, F. F., Alshugeairy, Z. K. and Abed, Z. A. (2024). Genetic variation in enzymes and physiological responses of wheat cultivars under drought conditions. SABRAO J. Breed. Genet. 56: 1134-46.
Altabtabaai, T. A., Alalwani, B. A. and Abbas, I. S. (2019). HPLC analysis of the trigonelline and diosgenin in the callus of fenugreek (Trigonella foenum graecum L.) seeds. Plant Arch. 19: 2046-50.
Chauhan, J. Y. O. T. I., Kakralya, B. L. and Singhal, R. K. (2017). Evaluation of morpho-physiological attributes of fenugreek (Trigonella Foenum Graecum) genotypes under different water regimes. Int J. Plant Sci. 12: 271-81.
Chiuta, N. (2025). Identification of drought-tolerant maize (Zea mays L.) hybrids using yield components and drought tolerance indices. Res. Crop. 26: 252-59.
Dahot, M. U., Rind, E. and Rafiq, M. (2011). Physical and biochemical analysis of sodium azide treated Sorghum bicolor (L.) Monech. Pak. J. Biotechnol. 8: 67-72.
Deshpande, H. A. and Bhalsing, S. R. (2014). Isolation and characterization of diosgenin from in vitro cultured tissues of Helicteres isora L. Physiol. Mol. Biol. Plants 20: 89-94.
Elfeky, S., Abo-Hamad, S. and Saad-Allah, K. M. (2014). Physiological impact of sodium azide on Helianthus annus seedlings. Int. J. Agron. Agric. Res. 4: 102-09.
Ghazi, T. M. and Abed, Z. A. (2025). Estimation of some genetic parameters of the sunflower genotypes under drought stress. Bulgarian J. Agric. Sci. 31: 355-60.
Hasanuzzaman, M., Bhuyan, M. B., Anee, T. I., Parvin, K., Nahar, K., Mahmud, J. A. and Fujita, M. (2019). Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8: doi:10.3390/antiox8090384.
Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A. and Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9:  doi:10.3390/antiox9080681.
Huang, X., Guo, W., Yang, L., Zou, Z., Zhang, X., Addo-Danso, S. D., …. and Li, S. (2023). Effects of drought stress on non-structural carbohydrates in different organs of Cunninghamia lanceolata. Plants 12: doi:10.3390/plants12132477.
Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H. J. and Panneerselvam, R. (2009). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol. Plant. 31: 427-36.
Kaur, G. and Asthir, B. J. B. P. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant. 59: 609-19.
Khan, P., Abdelbacki, A. M., Albaqami, M., Jan, R. and Kim, K. M. (2025). Proline promotes drought tolerance in maize. Biology 14: doi:10.3390/biology14010041.
Liang, Y., Wei, G., Ning, K., Li, M., Zhang, G., Luo, L. and Chen, S. (2021). Increase in carbohydrate content and variation in microbiome are related to the drought tolerance of Codonopsis pilosulaPlant Physiol. Biochem. 165: 19-35.
Maleki, M., Shojaeiyan, A. and Mokhtassi-Bidgoli, A. (2024). Differential responses of two fenugreek (Trigonella foenum-graecum L.) landraces pretreated with melatonin to prolonged drought stress and subsequent recovery. BMC Plant Biol. 24: 161. doi:10.1186/s12870-024-04835-w.
Masuko, T., Minami, A., Iwasaki, N., Majima, T., Nishimura, S. I. and Lee, Y. C. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in microplate format. Anal. Biochem. 339: 69-72.
Mehmandar, M. N., Rasouli, F., Giglou, M. T., Zahedi, S. M., Hassanpouraghdam, M. B., Aazami, M. A., Tajaragh, R. P., Ryant, P. and Mlcek, J. (2023). Polyethylene glycol and sorbitol-mediated in vitro screening for drought stress as an efficient and rapid tool to reach the tolerant Cucumis melo L. genotypes. Plants 12: doi:10.3390/plants12040870.
Mohammed, D., Adhab, M. and Al-Kuwaiti, N. (2021). Molecular characterization of viruses associated to leaf curl disease complex on zucchini squash in Iraq reveals Deng primer set could distinguish between New and Old World Begomo viruses. Anais da Academia Brasileira de Ciências 93: doi:10.1590/0001-3765202120210050.
Naaz, N., Choudhary, S., Hasan, N., Sharma, N., Alharbi, K. and Abd El Moneim, D. (2024). Enhancing genetic variability in Trigonella species through sodium azide induction: morpho-physiological and chromosomal amelioration. Front. Genet. 15: doi:10.3389/fgene.2024. 1378368.
Naaz, N., Choudhary, S., Sharma, N., Hasan, N., Al Shaye, N. A. and Abd El-Moneim, D. (2023). Frequency and spectrum of M2 mutants and genetic variability in cyto-agronomic characteristics of fenugreek induced by caffeine and sodium azide. Front. Plant Sci. 13: doi:10.3389/fpls.2022.1030772.
Nawaz, M., Anjum, S. A., Ashraf, U., Azeem, F. and Wang, Z. (2021). Antioxidant defense system and reactive oxygen species (ROS) interplay in plants under drought conditions. Handbook of climate change management: research, leadership, transformation. pp: 93-117. doi:10.1007/978-3-030-22759-3_121-1.
Panghal, V. P. S., Duhan, D. S. and Lal, M. (2015). Influence of biofertilizers along with inorganic source of nitrogen and phosphorus on growth, seed yield and quality of fenugreek (Trigonella foenum-graecum L.). Res. Crop. 16: 288-92.
Poudel, M. R., Bhusal, P., Lamsal, K., Kafle, K., Ghimire, P., Ghimire, M., Rijal, A. and Lamsal, N. (2024). Influence of drought conditions on yield attributing characters and yield of wheat genotypes. Farm. Manage. 9: 12-17.
Rajput, V. D., Harish, Singh, R. K., Verma, K. K., Sharma, L., Quiroz-Figueroa, F. R. et al. and Mandzhieva, S. (2021). Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 10:  doi:10.3390/biology 10040267.
Saxena, S. N., Kakani, R. K., Sharma, L. K., Agarwal, D., John, S. and Sharma, Y. (2017). Genetic variation in seed quality and fatty acid composition of fenugreek (Trigonella graecum foenum- L.) genotypes grown under limited moisture conditions. Acta Physiol. Plant. 39:  doi:10.1007/s11738-017-2522-6.
Sherin, G., Aswathi, K. R. and Puthur, J. T. (2022). Photosynthetic functions in plants subjected to stresses are positively influenced by priming. Plant Stress 4: doi:10.1016/j.stress.2022. 100079.
Tavangar, A., Karami, L., Hedayat, M. and Abdi, G. (2021). Effect of salinity and drought stress on morphological and biochemical properties of two Iranian fenugreek (Trigonella foenum-graecum) populations. Not. Bot. Horti Agrobot. Cluj-Napoca 49: doi:10.15835/ nbha49212038.
Wijerathna-Yapa, A. and Hiti-Bandaralage, J. (2023). Tissue culture - A sustainable approach to explore plant stresses. Life 13: doi:10.3390/life13030780.
Yasir, M. A. and Abed, Z. A. (2024). Genetic parameters and heritability of sunflower genotypes as influenced by different nitrogen rates. In: IOP Conf. Series: Earth Environ. Sci1371: doi:10.1088/1755-1315/1371/5/052051.
Zandi, P. and Schnug, E. (2022). Reactive oxygen species, antioxidant responses and implications from a microbial modulation perspective. Biology 11:  doi:10.3390/biology 11020155.

Global Footprints