Al‐Dairi, M., Pathare, P. B. and Al‐Yahyai, R. (2021). Quality changes kinetic of tomato during transportation and storage. J. Food Process. Eng. 44: doi:10.1111/jfpe.13808.
Ali, K. A., Noraldeen, S. S. and Yaseen, A. A. (2021). An evaluation study for chlorophyll estimation techniques. Sarhad J. Agric. 37: 1458-65.
Aono, Y., Asikin, Y., Wang, N., Tieman, D., Klee, H. and Kusano, M. (2021). High-throughput chlorophyll and carotenoid profiling reveals positive associations with sugar and apocarotenoid volatile content in fruits of tomato varieties in modern and wild accessions. Metabolites 11: doi:10.3390/metabo11060398.
Avasiloaiei, D. I., Calara, M., Brezeanu, P. M., Bălăiță, C., Brumă, I. S. and Brezeanu, C. (2025). Optimizing tomato yield and quality in greenhouse cultivation through fertilization and soil management. Agronomy 15: doi:10.3390/agronomy15092045.
Bilinska, O., Kulka, V., Samets, N. and Golod, R. (2021). The influence of the use of the drug albit on the formation of the seed productivity of the pre-basic material of potatoes. UKR Black Sea Reg. Agric. Sci. 2: 71-79. doi:10.31521/2313-092X/2021-1(109)-1.
Bindraban, P. S., Dimkpa, C. O., Angle, S. and Rabbinge, R. (2018). Unlocking the multiple public good services from balanced fertilizers. Food Secur. 10: 273–85.
Chrysargyris, A., Charalambous, S., Xylia, P., Litskas, V., Stavrinides, M. and Tzortzakis, N. (2020). Assessing the biostimulant effects of a novel plant-based formulation on tomato crop. Sustainability 12: doi:10.3390/su12208432.
Cocaliadis, M. F., Fernández-Muñoz, R., Pons, C., Orzaez, D. and Granell, A. (2013). Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J. Exp. Bot. 65: 4589-98.
Cozzolino, E., Di Mola, I., Ottaiano, L., El-Nakhel, C., Rouphael, Y. and Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 16: doi:10.4081/ija.20 21.1825.
DePascale, S., Rouphael, Y. and Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 82: 277–85. doi:10.17660/eJHS.2017/82.6.2.
Hussein, M. and Abou-Baker, N. H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. R. Soc. Open Sci. 5: doi:10.1098/rsos.171809.
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a biostimulant for a potentially enhanced quality of soilless organically grown tomato plants. Independent project in Horticultural Science • 30 credits Swedish University of Agricultural Sciences, SLU Department of Biosystems and Technology, Microbial Horticulture Master’s programme Horticultural Science Alnarp 2023.
Kondratyeva, I. Yu. and Pavlov, L.V. (2009). Dry components concentration in tomato fruits in dependence of qualitative and quantitative parameters. Kartofel i Ovoshchi: Potato and Vegetables 5:21. (in Russian)
Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K. and Verma, K. K. (2022). Climate change and its impact on crops: A comprehensive investigation for sustainable agriculture. Agronomy 12: doi:10.3390/ agronomy 12123008.
Kurina, A. B., Solovieva, A. E., Khrapalova, I. A. and Artemyeva, A. M. (2021). Biochemical composition of tomato fruits of various colors. Vavilov J. Genet. Breed. 25: 514-27. doi:10.18699/VJ21.058.
Mandal, D. (2021). Nanofertilizer and its application in horticulture. J. Appl. Hortic, 23: 70–77.
Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S.A. (2020). Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front. Nanotechnol. 2: doi:10.3389/FNANO.2020.579954.
Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., Bamouh, A. and Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of Moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11: doi:10.3390/agronomy 11071373.
Najafzadeh Nobar, Z. and Safari Sinegani, A.A. (2022). Effect of soil contamination and antibiotics application on growth and some physiological traits of beans in greenhouse condition. ECOPERSIA 10: 267-83.
Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K. and Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 10: doi:10.3390/metabo10120505.
Robroek, B. J. M., Jassey, V. E. J., Beltman, B. and Hefting, M. (2017). Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. R. Soc. Open Sci. 4: doi:10.1098/rsos.170449.
Serrano-Ruiz, H., Martin-Closas, L. and Pelacho, A. M. (2023). Impact of buried debris from agricultural biodegradable plastic mulches on two horticultural crop plants: Tomato and lettuce. Sci. Total Environ. 856 (Part 2): doi:10.1016/j.scitotenv.2022. 159167.
Shabani, E., Ansari, N. A. and Fayezizadeh, M. R. (2023). Plant growth bio-stimulants of seaweed extract (Sargasum boveanum): Implicate ions toward sustainable production of cucumber. Yuzuncu Yil U. J. Agric. Sci. 33: 478-90. doi:10.29133/ yyutbd.1288078.
Teka, T. A. (2013). Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. IRJPAS 3: 180-86.
Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. JFST 50: 477–86. doi:10.1007/s13197-011-0378-0.
Turan, M., Ekinci, M., Argin, S., Brinza, M. and Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Front. Plant Sci. 14: doi:10.3389/fpls.2023.1211210.
Weisser, M., Mattner, S. W., Southam-Rogers, L., Hepworth, G. and Arioli, T. (2024). Effect of a fortified biostimulant extract on tomato plant productivity, physiology, and growing media properties. Plants 13: doi:10.3390/plants13010004.
Wikimedia (2023). Wikimedia Foundation., Inc 2023, Climate of Moscow: Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/climate_of_moscow
Yakob, B. K. and Gins, M. S. (2025). Developmental and quality traits of tomato (Lycopersicon esculentum mill.) cultivars as affected by Albit-BR bio-stimulant. Indian J. Agric. Res. 59: 1528-34. doi:10.18805/IJARe.AF-953.
Yakob, B. K. and Sabirovich, G. M. (2024). Role of Albit-BR bio-stimulant application on growth, yield and quality characteristics of tomato (Lycopersicon esculentum) cultivars under open field conditions. Res. Crop. 25: 635-40. doi:10.31830/2348-7542.2024.ROC-1134.
Yakob, B. K. and Sabirovich, G. M. (2025). Improvement of tomato (Solanum lycopersicum L.) production using Albit-BR bio-stimulant under open field. AGRIVITA J. Agric. Sci. 47: 214–23. doi:10.17503/agrivita.v47i2.4755.
Zlotnikov, A. K. (2021). Effect of biomeliorant on mineral nutrition and productivity of agricultural plants. In: Zlotnikov, A.K., Zlotnikov, K.M., Lukin, S.M., Slesareva, T.N.S. and Kurakov, A.V. All-Russian scientific conference with international participation and school for young scientists “Experimental plant biology and biotechnology: history and look into the future”. Annual meeting of the Society of Plant Physiologists of Russia. Materials of reports. Moscow, 2021. pp. 46.
Zlotnikov, A. K., Andrianov, D. A., Andrianov, A. D., Gins, V. K., Gins, M. S., Zeiruk, V. N. and Panchkovskiy, A. S. (2021). Performance of bioproduct Albit on potatoes. Res. Crop. 22: 72-74.
Ali, K. A., Noraldeen, S. S. and Yaseen, A. A. (2021). An evaluation study for chlorophyll estimation techniques. Sarhad J. Agric. 37: 1458-65.
Aono, Y., Asikin, Y., Wang, N., Tieman, D., Klee, H. and Kusano, M. (2021). High-throughput chlorophyll and carotenoid profiling reveals positive associations with sugar and apocarotenoid volatile content in fruits of tomato varieties in modern and wild accessions. Metabolites 11: doi:10.3390/metabo11060398.
Avasiloaiei, D. I., Calara, M., Brezeanu, P. M., Bălăiță, C., Brumă, I. S. and Brezeanu, C. (2025). Optimizing tomato yield and quality in greenhouse cultivation through fertilization and soil management. Agronomy 15: doi:10.3390/agronomy15092045.
Bilinska, O., Kulka, V., Samets, N. and Golod, R. (2021). The influence of the use of the drug albit on the formation of the seed productivity of the pre-basic material of potatoes. UKR Black Sea Reg. Agric. Sci. 2: 71-79. doi:10.31521/2313-092X/2021-1(109)-1.
Bindraban, P. S., Dimkpa, C. O., Angle, S. and Rabbinge, R. (2018). Unlocking the multiple public good services from balanced fertilizers. Food Secur. 10: 273–85.
Chrysargyris, A., Charalambous, S., Xylia, P., Litskas, V., Stavrinides, M. and Tzortzakis, N. (2020). Assessing the biostimulant effects of a novel plant-based formulation on tomato crop. Sustainability 12: doi:10.3390/su12208432.
Cocaliadis, M. F., Fernández-Muñoz, R., Pons, C., Orzaez, D. and Granell, A. (2013). Increasing tomato fruit quality by enhancing fruit chloroplast function. A double-edged sword? J. Exp. Bot. 65: 4589-98.
Cozzolino, E., Di Mola, I., Ottaiano, L., El-Nakhel, C., Rouphael, Y. and Mori, M. (2021). Foliar application of plant-based biostimulants improve yield and upgrade qualitative characteristics of processing tomato. Ital. J. Agron. 16: doi:10.4081/ija.20 21.1825.
DePascale, S., Rouphael, Y. and Colla, G. (2017). Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 82: 277–85. doi:10.17660/eJHS.2017/82.6.2.
Hussein, M. and Abou-Baker, N. H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. R. Soc. Open Sci. 5: doi:10.1098/rsos.171809.
Kalozoumis, T. M. (2023). Combining solid digestate with microorganisms and a biostimulant for a potentially enhanced quality of soilless organically grown tomato plants. Independent project in Horticultural Science • 30 credits Swedish University of Agricultural Sciences, SLU Department of Biosystems and Technology, Microbial Horticulture Master’s programme Horticultural Science Alnarp 2023.
Kondratyeva, I. Yu. and Pavlov, L.V. (2009). Dry components concentration in tomato fruits in dependence of qualitative and quantitative parameters. Kartofel i Ovoshchi: Potato and Vegetables 5:21. (in Russian)
Kumari, A., Lakshmi, G. A., Krishna, G. K., Patni, B., Prakash, S., Bhattacharyya, M., Singh, S. K. and Verma, K. K. (2022). Climate change and its impact on crops: A comprehensive investigation for sustainable agriculture. Agronomy 12: doi:10.3390/ agronomy 12123008.
Kurina, A. B., Solovieva, A. E., Khrapalova, I. A. and Artemyeva, A. M. (2021). Biochemical composition of tomato fruits of various colors. Vavilov J. Genet. Breed. 25: 514-27. doi:10.18699/VJ21.058.
Mandal, D. (2021). Nanofertilizer and its application in horticulture. J. Appl. Hortic, 23: 70–77.
Mittal, D., Kaur, G., Singh, P., Yadav, K. and Ali, S.A. (2020). Nanoparticle-based sustainable agriculture and food science: recent advances and future outlook. Front. Nanotechnol. 2: doi:10.3389/FNANO.2020.579954.
Mzibra, A., Aasfar, A., Khouloud, M., Farrie, Y., Boulif, R., Kadmiri, I. M., Bamouh, A. and Douira, A. (2021). Improving growth, yield, and quality of tomato plants (Solanum lycopersicum L.) by the application of Moroccan seaweed-based biostimulants under greenhouse conditions. Agronomy, 11: doi:10.3390/agronomy 11071373.
Najafzadeh Nobar, Z. and Safari Sinegani, A.A. (2022). Effect of soil contamination and antibiotics application on growth and some physiological traits of beans in greenhouse condition. ECOPERSIA 10: 267-83.
Nephali, L., Piater, L. A., Dubery, I. A., Patterson, V., Huyser, J., Burgess, K. and Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites 10: doi:10.3390/metabo10120505.
Robroek, B. J. M., Jassey, V. E. J., Beltman, B. and Hefting, M. (2017). Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought. R. Soc. Open Sci. 4: doi:10.1098/rsos.170449.
Serrano-Ruiz, H., Martin-Closas, L. and Pelacho, A. M. (2023). Impact of buried debris from agricultural biodegradable plastic mulches on two horticultural crop plants: Tomato and lettuce. Sci. Total Environ. 856 (Part 2): doi:10.1016/j.scitotenv.2022. 159167.
Shabani, E., Ansari, N. A. and Fayezizadeh, M. R. (2023). Plant growth bio-stimulants of seaweed extract (Sargasum boveanum): Implicate ions toward sustainable production of cucumber. Yuzuncu Yil U. J. Agric. Sci. 33: 478-90. doi:10.29133/ yyutbd.1288078.
Teka, T. A. (2013). Analysis of the effect of maturity stage on the postharvest biochemical quality characteristics of tomato (Lycopersicon esculentum Mill.) fruit. IRJPAS 3: 180-86.
Tigist, M., Workneh, T. S. and Woldetsadik, K. (2013). Effects of variety on the quality of tomato stored under ambient conditions. JFST 50: 477–86. doi:10.1007/s13197-011-0378-0.
Turan, M., Ekinci, M., Argin, S., Brinza, M. and Yildirim, E. (2023). Drought stress amelioration in tomato (Solanum lycopersicum L.) seedlings by biostimulant as regenerative agent. Front. Plant Sci. 14: doi:10.3389/fpls.2023.1211210.
Weisser, M., Mattner, S. W., Southam-Rogers, L., Hepworth, G. and Arioli, T. (2024). Effect of a fortified biostimulant extract on tomato plant productivity, physiology, and growing media properties. Plants 13: doi:10.3390/plants13010004.
Wikimedia (2023). Wikimedia Foundation., Inc 2023, Climate of Moscow: Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/climate_of_moscow
Yakob, B. K. and Gins, M. S. (2025). Developmental and quality traits of tomato (Lycopersicon esculentum mill.) cultivars as affected by Albit-BR bio-stimulant. Indian J. Agric. Res. 59: 1528-34. doi:10.18805/IJARe.AF-953.
Yakob, B. K. and Sabirovich, G. M. (2024). Role of Albit-BR bio-stimulant application on growth, yield and quality characteristics of tomato (Lycopersicon esculentum) cultivars under open field conditions. Res. Crop. 25: 635-40. doi:10.31830/2348-7542.2024.ROC-1134.
Yakob, B. K. and Sabirovich, G. M. (2025). Improvement of tomato (Solanum lycopersicum L.) production using Albit-BR bio-stimulant under open field. AGRIVITA J. Agric. Sci. 47: 214–23. doi:10.17503/agrivita.v47i2.4755.
Zlotnikov, A. K. (2021). Effect of biomeliorant on mineral nutrition and productivity of agricultural plants. In: Zlotnikov, A.K., Zlotnikov, K.M., Lukin, S.M., Slesareva, T.N.S. and Kurakov, A.V. All-Russian scientific conference with international participation and school for young scientists “Experimental plant biology and biotechnology: history and look into the future”. Annual meeting of the Society of Plant Physiologists of Russia. Materials of reports. Moscow, 2021. pp. 46.
Zlotnikov, A. K., Andrianov, D. A., Andrianov, A. D., Gins, V. K., Gins, M. S., Zeiruk, V. N. and Panchkovskiy, A. S. (2021). Performance of bioproduct Albit on potatoes. Res. Crop. 22: 72-74.










