Loading...

Influence of explant type on the in vitro regeneration process of Russian rapeseed (Brassica napus L.) varieties 


Citation :- Influence of explant type on the in vitro regeneration process of Russian rapeseed (Brassica napus L.) varieties. Res. Crop. 26: 569-574
NATALIA V. VARLAMOVA, OLGA D. ZINOV’EVA, MIKHAIL G. DIVASHUK AND OLEG S. ALEXANDROV olegsandrov@gmail.com
Address : All-Russia Research Institute of Agricultural Biotechnology 127550 Moscow, Russia
Submitted Date : 24-10-2025
Accepted Date : 18-11-2025

Abstract

Rapeseed is an important oilseed crop whose importance has increased due to the use of rapeseed oil as biodiesel. The study of the rapeseed genome has made the issue of its editing more relevant. An important part of genome editing is the regeneration of plants in vitro. However, regeneration conditions (composition of the nutrient medium, type of explant, etc.) often vary between genotypes/varieties, and selecting the optimal in vitro protocol is a primary task when genome editing of a particular genotype/variety is required. In this study, a comparison of three types of explants (stem, hypocotyl, cotyledons) was carried out in three Russian rapeseed varieties (‘Triumph’, ‘Yarilo’, ‘Favorit’) on MS nutrient medium containing 4 mg/L 6-BAP, 0.2 mg/l NAA and 5 mg/L silver nitrate. The average values of the regenerated explant proportions across replicates ranged from 15.7 (“hypocotyl-Favorit”) to 66.7% (“stem-Triumph”). Two-way ANOVA with a Duncan’s test revealed that the “stem-Triumph” and “stem-Yarilo” variants were the best and significantly different from the others. The average number of regenerants per explant varied from 1.90 (“cotyledons-Yarilo”) to 4.79 (“hypocotyl-Yarilo”). The variants “stem-Triumph”, “hypocotyl-Triumph” and “stem-Favorite” with values of 4.20, 4.16 and 3.68, respectively, did not differ significantly from the best variant. Thus, the “stem-Triumph” variant showed the best results of the regenerated explant proportion and number of regenerants per explant. This result is very promising and will be used in the development of an in vitro protocol for genome editing of the Triumph rapeseed variety.

Keywords

Genome editing in vitro protocol rapeseed regeneration type of explant

References

Ahmad, A., Qamar, M. T., Shoukat, A., Aslam, M. M., Tariq, M., Hakiman, M. and Joyia, F. A. (2021). The effects of genotypes and media composition on callogenesis, regeneration and cell suspension culture of chamomile (Matricaria chamomilla L.). Peer J. 9: doi:10.7717/peerj.11464/supp-1.
Alam, S. S., Khaleda, L. and Al-Forkan, M. (2013). An efficient in vitro regeneration system for Tori (Brassica campestris)-7. GJSFR-G Bio-Tech. Genet. 13: 30-4.
Alexandrov, O. S., Petrov, N. R., Varlamova, N. V. and Khaliluev, M. R. (2021). An optimized protocol for in vitro indirect shoot organogenesis of Impala bronzovaya and Zanzibar green Ricinus communis L. varieties. Horticulturae 7: doi:10.3390/horticulturae7050105.
Asmamaw, M. and Zawdie, B. (2021). Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 15: 353-61.
Chernobrovkina, M. A., Khvatkov, P. A., Leonteva, A. V. and Dolgov, S. V. (2017). Study of the domestic breeding winter rape morphogenetic potential using in vitro culture. Int. J. Appl. Fund. Res. 11: 260-64.
Darçın, E. S., Kolsarıcı, Ö. and Yıldız, M. (2014). Establishment of efficient regeneration protocol for three rapeseed cultivars. Biotechnol. Biotechnol. Equip. 28: 21-6.
Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., Heyman, J., Watanabe, S., Seo, M., De Veylder, L., Sakakibara, H. and Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant physiol. 175: 1158-74.
Kamal, G. B., Karlov, G. I. and Asadollah, A. (2007). Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr. J. Biotechnol. 6: 861-67.
Kontsevaya, I. I. and Shevtsova, L. V. (2011). Micropropagation of rare birch species growing in Belarus. Vest. Moz. State Ped. Univ. I.P. Shamyakin 30: 8-12. (In Russian).
Korneeva, I. V., Varlamova, N. V., Khaliluev, M. R., Pushin, A. S., Kharchenko, P. N. and Dolgov, S. V. (2010b). Production of transgenic spring and winter rape plants resistant to phosphinothricin-based herbicides ("Basta", "Liberty"). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 119-27.
Korneeva, I. V., Varlamova, N. V., Pushin, A. S., Firsov, A. P., Kharchenko, P. N. and Dolgov, S. V. (2010a). Production of transgenic winter rapeseed plants (Brassiсa napus) expressing a heterologous gene of the PR-5 protective TL protein group from kiwi (Actinidia deliciosa). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 112-18.
Malmberg, M. M., Shi, F., Spangenberg, G. C., Daetwyler, H. D. and Cogan, N. O. (2018). Diversity and genome analysis of Australian and global oilseed Brassica napus L. germplasm using transcriptomics and whole genome re-sequencing. Front. Plant Sci. 9doi:10.3389/fpls. 2018.00508.
Marutani-Hert, M., Bowman, K. D., McCollum, G. T., Mirkov, T. E., Evens, T. J. and Niedz, R. P. (2012). A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock. PLoS ONE 7: doi:10.1371/journal.pone.0047426.
Mohamed, I. A., Shalby, N., El-Badri, A. M., Awad-Allah, E. F., Batool, M., Saleem, M. H., Wang, Z., Wen, J., Ge, X., Xu, Z., Wang, J., Kuai, J., Wang, B., Zhou, G. and Fu, T. (2025). Multipurpose uses of rapeseed (Brassica napus L.) crop (food, feed, industrial, medicinal, and environmental conservation uses) and improvement strategies in China. J. Agric. Food Res. 20: doi:10.1016/j.jafr.2025.101794.
Othmani, A., Sellemi, A., Jemni, M., Kadri, K., Leus, L. and Werbrouck, S. P. (2024). In vitro initiation, regeneration, and characterization of plants derived from mature tetraploid floral explants of date palm (Phoenix dactylifera L.). Horticulturae 10: doi:10.3390/ horticulturae10111206.
Song, J. M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., Xie, W. Z., Cheng, Y., Zhang, Y., Liu, K., Yang, Q. Y., Chen, L. L. and Guo, L. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6: 34-45.
Sosnowska, K., Majka, M., Majka, J., Bocianowski, J., Kasprowicz, M., Książczyk, T., Szała, L. and Cegielska-Taras, T. (2020). Chromosome instabilities in resynthesized Brassica napus revealed by FISH. J. Appl. Genet. 61: 323-35.
Sretenović-Rajičić, T., Ninković, S., Uzelać, B., Vinterhalter, B. and Vinterhalter, D. (2007). Effects of plant genotype and bacterial strain on Agrobacterium tumefaciens-mediated transformation of Brassica oleracea L. var. capitata. Russ. J. Plant Physiol. 54: 653-58.
Thaniarasu, R., Senthil Kumar, T. and Rao, M. V. (2016). Mass propagation of Plectranthus bourneae Gamble through indirect organogenesis from leaf and internode explants. Physiol. Mol. Biol. Plants 22: 143-51.
Vysotskiy, V. A. and Upadyshev M. T. (2015). Regenerative ability of Rubus L. genera explants of different origination. Hortic. Viticult. 4: 24-29.
Zharassova, D. N. and Tolep, N. A. (2022). Micropropagation of Paulownia tomentosa (Thunb.) Steud. Probl. bot. Ûžn. Sib. Mong. 21: 71-74.
Zhu, J., Zhang, J., Jiang, M., Wang, W., Jiang, J., Li, Y., Yang, L. and Zhou, X. (2021). Development of genome-wide SSR markers in rapeseed by next generation sequencing. Gene 798: doi:10.1016/j.gene.2021.145798.

Global Footprints