Ahmad, A., Qamar, M. T., Shoukat, A., Aslam, M. M., Tariq, M., Hakiman, M. and Joyia, F. A. (2021). The effects of genotypes and media composition on callogenesis, regeneration and cell suspension culture of chamomile (Matricaria chamomilla L.). Peer J. 9: doi:10.7717/peerj.11464/supp-1.
Alam, S. S., Khaleda, L. and Al-Forkan, M. (2013). An efficient in vitro regeneration system for Tori (Brassica campestris)-7. GJSFR-G Bio-Tech. Genet. 13: 30-4.
Alexandrov, O. S., Petrov, N. R., Varlamova, N. V. and Khaliluev, M. R. (2021). An optimized protocol for in vitro indirect shoot organogenesis of Impala bronzovaya and Zanzibar green Ricinus communis L. varieties. Horticulturae 7: doi:10.3390/horticulturae7050105.
Asmamaw, M. and Zawdie, B. (2021). Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 15: 353-61.
Chernobrovkina, M. A., Khvatkov, P. A., Leonteva, A. V. and Dolgov, S. V. (2017). Study of the domestic breeding winter rape morphogenetic potential using in vitro culture. Int. J. Appl. Fund. Res. 11: 260-64.
Darçın, E. S., Kolsarıcı, Ö. and Yıldız, M. (2014). Establishment of efficient regeneration protocol for three rapeseed cultivars. Biotechnol. Biotechnol. Equip. 28: 21-6.
Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., Heyman, J., Watanabe, S., Seo, M., De Veylder, L., Sakakibara, H. and Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant physiol. 175: 1158-74.
Kamal, G. B., Karlov, G. I. and Asadollah, A. (2007). Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr. J. Biotechnol. 6: 861-67.
Kontsevaya, I. I. and Shevtsova, L. V. (2011). Micropropagation of rare birch species growing in Belarus. Vest. Moz. State Ped. Univ. I.P. Shamyakin 30: 8-12. (In Russian).
Korneeva, I. V., Varlamova, N. V., Khaliluev, M. R., Pushin, A. S., Kharchenko, P. N. and Dolgov, S. V. (2010b). Production of transgenic spring and winter rape plants resistant to phosphinothricin-based herbicides ("Basta", "Liberty"). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 119-27.
Korneeva, I. V., Varlamova, N. V., Pushin, A. S., Firsov, A. P., Kharchenko, P. N. and Dolgov, S. V. (2010a). Production of transgenic winter rapeseed plants (Brassiсa napus) expressing a heterologous gene of the PR-5 protective TL protein group from kiwi (Actinidia deliciosa). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 112-18.
Malmberg, M. M., Shi, F., Spangenberg, G. C., Daetwyler, H. D. and Cogan, N. O. (2018). Diversity and genome analysis of Australian and global oilseed Brassica napus L. germplasm using transcriptomics and whole genome re-sequencing. Front. Plant Sci. 9: doi:10.3389/fpls. 2018.00508.
Marutani-Hert, M., Bowman, K. D., McCollum, G. T., Mirkov, T. E., Evens, T. J. and Niedz, R. P. (2012). A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock. PLoS ONE 7: doi:10.1371/journal.pone.0047426.
Mohamed, I. A., Shalby, N., El-Badri, A. M., Awad-Allah, E. F., Batool, M., Saleem, M. H., Wang, Z., Wen, J., Ge, X., Xu, Z., Wang, J., Kuai, J., Wang, B., Zhou, G. and Fu, T. (2025). Multipurpose uses of rapeseed (Brassica napus L.) crop (food, feed, industrial, medicinal, and environmental conservation uses) and improvement strategies in China. J. Agric. Food Res. 20: doi:10.1016/j.jafr.2025.101794.
Othmani, A., Sellemi, A., Jemni, M., Kadri, K., Leus, L. and Werbrouck, S. P. (2024). In vitro initiation, regeneration, and characterization of plants derived from mature tetraploid floral explants of date palm (Phoenix dactylifera L.). Horticulturae 10: doi:10.3390/ horticulturae10111206.
Song, J. M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., Xie, W. Z., Cheng, Y., Zhang, Y., Liu, K., Yang, Q. Y., Chen, L. L. and Guo, L. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6: 34-45.
Sosnowska, K., Majka, M., Majka, J., Bocianowski, J., Kasprowicz, M., Książczyk, T., Szała, L. and Cegielska-Taras, T. (2020). Chromosome instabilities in resynthesized Brassica napus revealed by FISH. J. Appl. Genet. 61: 323-35.
Sretenović-Rajičić, T., Ninković, S., Uzelać, B., Vinterhalter, B. and Vinterhalter, D. (2007). Effects of plant genotype and bacterial strain on Agrobacterium tumefaciens-mediated transformation of Brassica oleracea L. var. capitata. Russ. J. Plant Physiol. 54: 653-58.
Thaniarasu, R., Senthil Kumar, T. and Rao, M. V. (2016). Mass propagation of Plectranthus bourneae Gamble through indirect organogenesis from leaf and internode explants. Physiol. Mol. Biol. Plants 22: 143-51.
Vysotskiy, V. A. and Upadyshev M. T. (2015). Regenerative ability of Rubus L. genera explants of different origination. Hortic. Viticult. 4: 24-29.
Zharassova, D. N. and Tolep, N. A. (2022). Micropropagation of Paulownia tomentosa (Thunb.) Steud. Probl. bot. Ûžn. Sib. Mong. 21: 71-74.
Zhu, J., Zhang, J., Jiang, M., Wang, W., Jiang, J., Li, Y., Yang, L. and Zhou, X. (2021). Development of genome-wide SSR markers in rapeseed by next generation sequencing. Gene 798: doi:10.1016/j.gene.2021.145798.
Alam, S. S., Khaleda, L. and Al-Forkan, M. (2013). An efficient in vitro regeneration system for Tori (Brassica campestris)-7. GJSFR-G Bio-Tech. Genet. 13: 30-4.
Alexandrov, O. S., Petrov, N. R., Varlamova, N. V. and Khaliluev, M. R. (2021). An optimized protocol for in vitro indirect shoot organogenesis of Impala bronzovaya and Zanzibar green Ricinus communis L. varieties. Horticulturae 7: doi:10.3390/horticulturae7050105.
Asmamaw, M. and Zawdie, B. (2021). Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics 15: 353-61.
Chernobrovkina, M. A., Khvatkov, P. A., Leonteva, A. V. and Dolgov, S. V. (2017). Study of the domestic breeding winter rape morphogenetic potential using in vitro culture. Int. J. Appl. Fund. Res. 11: 260-64.
Darçın, E. S., Kolsarıcı, Ö. and Yıldız, M. (2014). Establishment of efficient regeneration protocol for three rapeseed cultivars. Biotechnol. Biotechnol. Equip. 28: 21-6.
Ikeuchi, M., Iwase, A., Rymen, B., Lambolez, A., Kojima, M., Takebayashi, Y., Heyman, J., Watanabe, S., Seo, M., De Veylder, L., Sakakibara, H. and Sugimoto, K. (2017). Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant physiol. 175: 1158-74.
Kamal, G. B., Karlov, G. I. and Asadollah, A. (2007). Effects of genotype, explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr. J. Biotechnol. 6: 861-67.
Kontsevaya, I. I. and Shevtsova, L. V. (2011). Micropropagation of rare birch species growing in Belarus. Vest. Moz. State Ped. Univ. I.P. Shamyakin 30: 8-12. (In Russian).
Korneeva, I. V., Varlamova, N. V., Khaliluev, M. R., Pushin, A. S., Kharchenko, P. N. and Dolgov, S. V. (2010b). Production of transgenic spring and winter rape plants resistant to phosphinothricin-based herbicides ("Basta", "Liberty"). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 119-27.
Korneeva, I. V., Varlamova, N. V., Pushin, A. S., Firsov, A. P., Kharchenko, P. N. and Dolgov, S. V. (2010a). Production of transgenic winter rapeseed plants (Brassiсa napus) expressing a heterologous gene of the PR-5 protective TL protein group from kiwi (Actinidia deliciosa). In: Scientific support for the rapeseed industry and ways to realize the biological potential of rapeseed: scientific reports at the international coordination meeting on rapeseed, July 12-15. All-Russian Research Institute of Rapeseed, Lipetsk, Russia. pp: 112-18.
Malmberg, M. M., Shi, F., Spangenberg, G. C., Daetwyler, H. D. and Cogan, N. O. (2018). Diversity and genome analysis of Australian and global oilseed Brassica napus L. germplasm using transcriptomics and whole genome re-sequencing. Front. Plant Sci. 9: doi:10.3389/fpls. 2018.00508.
Marutani-Hert, M., Bowman, K. D., McCollum, G. T., Mirkov, T. E., Evens, T. J. and Niedz, R. P. (2012). A dark incubation period is important for Agrobacterium-mediated transformation of mature internode explants of sweet orange, grapefruit, citron, and a citrange rootstock. PLoS ONE 7: doi:10.1371/journal.pone.0047426.
Mohamed, I. A., Shalby, N., El-Badri, A. M., Awad-Allah, E. F., Batool, M., Saleem, M. H., Wang, Z., Wen, J., Ge, X., Xu, Z., Wang, J., Kuai, J., Wang, B., Zhou, G. and Fu, T. (2025). Multipurpose uses of rapeseed (Brassica napus L.) crop (food, feed, industrial, medicinal, and environmental conservation uses) and improvement strategies in China. J. Agric. Food Res. 20: doi:10.1016/j.jafr.2025.101794.
Othmani, A., Sellemi, A., Jemni, M., Kadri, K., Leus, L. and Werbrouck, S. P. (2024). In vitro initiation, regeneration, and characterization of plants derived from mature tetraploid floral explants of date palm (Phoenix dactylifera L.). Horticulturae 10: doi:10.3390/ horticulturae10111206.
Song, J. M., Guan, Z., Hu, J., Guo, C., Yang, Z., Wang, S., Liu, D., Wang, B., Lu, S., Zhou, R., Xie, W. Z., Cheng, Y., Zhang, Y., Liu, K., Yang, Q. Y., Chen, L. L. and Guo, L. (2020). Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat. Plants 6: 34-45.
Sosnowska, K., Majka, M., Majka, J., Bocianowski, J., Kasprowicz, M., Książczyk, T., Szała, L. and Cegielska-Taras, T. (2020). Chromosome instabilities in resynthesized Brassica napus revealed by FISH. J. Appl. Genet. 61: 323-35.
Sretenović-Rajičić, T., Ninković, S., Uzelać, B., Vinterhalter, B. and Vinterhalter, D. (2007). Effects of plant genotype and bacterial strain on Agrobacterium tumefaciens-mediated transformation of Brassica oleracea L. var. capitata. Russ. J. Plant Physiol. 54: 653-58.
Thaniarasu, R., Senthil Kumar, T. and Rao, M. V. (2016). Mass propagation of Plectranthus bourneae Gamble through indirect organogenesis from leaf and internode explants. Physiol. Mol. Biol. Plants 22: 143-51.
Vysotskiy, V. A. and Upadyshev M. T. (2015). Regenerative ability of Rubus L. genera explants of different origination. Hortic. Viticult. 4: 24-29.
Zharassova, D. N. and Tolep, N. A. (2022). Micropropagation of Paulownia tomentosa (Thunb.) Steud. Probl. bot. Ûžn. Sib. Mong. 21: 71-74.
Zhu, J., Zhang, J., Jiang, M., Wang, W., Jiang, J., Li, Y., Yang, L. and Zhou, X. (2021). Development of genome-wide SSR markers in rapeseed by next generation sequencing. Gene 798: doi:10.1016/j.gene.2021.145798.










