Loading...

Allopolyploidy and genomic diversity in the genus Elymus L. (Triticeae): Insights and future research directions 


Citation :- Allopolyploidy and genomic diversity in the genus Elymus L. (Triticeae): Insights and future research directions. Res. Crop. 26: 539-554
GONZÁLEZ FRANCO M. J., YURKINA A. I. AND KROUPIN P. YU. aaaaaa3197@gmail.com
Address : All-Russia Research Institute of Agricultural Biotechnology, ARRIAB, Moscow, Russia
Submitted Date : 3-11-2025
Accepted Date : 30-11-2025

Abstract

The genus Elymus L. (wild rye) is the largest and evolutionary most complex allopolyploid genus in the wheat tribe (Triticeae), serving as a model for studying plant speciation and genome evolution. This review summarises current data on the origin and genomic architecture of the genus, with a focus on the debated question of the origin of the Y-genome. Two competing hypotheses are analysed: the origin of the Y-genome from the St-genome via differentiation, and its independent origin from an unknown diploid ancestor close to the V-genome. It is shown that Elymus species are a valuable source of unique genes for resistance to biotic (Fusarium head blight, leaf rust) and abiotic (drought) stresses. Advances in the field of distant hybridisation and chromosome engineering are reviewed, with special attention paid to the application of next-generation sequencing (NGS) for studying the genetics and breeding of Elymus species, as well as achievements in cytogenetic studies using in situ hybridisation techniques. It is concluded that further comprehensive studies of the genus Elymus, integrating genomic and cytogenetic methods, are key to both unravelling the fundamental mechanisms of polyploid evolution and developing resilient cereal cultivars.

Keywords

Allopolyploidy Elymus genome evolution genomic selection molecular cytogenetics wide hybridisation 


References

Agafonov, A. V., Kobozeva, E. V. and Salomon, B. (2015). New species of the genus Elymus (Poaceae) from the Altai mountains. Rast. mir Aziat. Ros. 4: 36-40.
Agafonov, A. V., Shabanova, E. V., Emtseva, M. V., Asbaganov, S. V., Morozov, I. V., Bondar, A. A. and Dorogina, O. V. (2024). Phylogenetic and taxonomic relationships between morphotypes related to Elymus caninus (Poaceae) based on sequence of a nuclear gene GBSS1 (waxy) and sexual hybridization. J. Syst. Evol. 62: 520–33.
Ali, A., Ullah, R., Anwar, S., Ali, A., Ullah, Z., Sher, H. and Iqbal, R. (2025). Morphological and genetic diversity of barley (Hordeum vulgare L.) germplasm. Genet. Resour. Crop Evol. 72: 3465-78.
Aung, T. (1991). Intergeneric hybrids between Hordeum vulgare and Elymus trachycaulus resistant to Russian wheat aphid. Genome 34: 954–60.
Badaeva, E. D., Ruban, A. S., Shishkina, A. A., Sibikeev, S. N., Druzhin, A. E., Surzhikov, S. A. and Dragovich, A. Y. (2018). Genetic classification of Aegilops columnaris Zhuk (2n= 4x= 28, UcUcXcXc) chromosomes based on FISH analysis and substitution patterns in common wheat× Ae. columnaris introgressive lines. Genome 61: 131-43.
Ban, T. (1997). Evaluation of resistance to Fusarium head blight in indigenous Japanese species of Agropyron (Elymus). Euphytica 97: 39-44. doi:10.1023/A:1003078109694
Barashkova N. V., Gabysheva L. K. and Fedorova A. I. (2022). The impact of mineral nutrition on biochemical composition and nutritional value of long-term plant ecosystem in the middle Taiga of Yakutia. Kormoproizvodstvo 2: 14-19.
Barkworth, M. E. and R. von Bothmer. (2009). Scientific names in the Triticeae. Genetics and Genomics of the Triticeae. Springer. pp: 3-30.
Baum, B. R., Edwards, T. and Johnson D. A. (2015). Diversity within the genus Elymus (Poaceae: Triticeae) as investigated by the analysis of the nr5S rDNA variation in species with St and H haplomes. Mol. Genet. Genom. 290: 329-42.
Baum, B. R., Edwards, T. and Johnson, D. A. (2016). Diversity within the genus Elymus (Poaceae: Triticeae) II: analyses of variation within 5S nrDNA restrict membership in the genus to species with StH genomes. Mol. Genet. Genom. 291: 217–25.
Borrajo, C. I., Sánchez-Moreiras, A. M. and Reigosa, M. J. (2018). Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS One 13: doi:10.1371/journal.pone.0209281.
Bothmer, R. V., Seberg, O. and Jacobsen, N. (1992). Genetic resources in the Triticeae. Hereditas. 116: 141-50.
Cai, R. (2024). Triticeae in global food security: challenges and prospects. Triticeae Genom. Genet. 15: 44-55.
Cainong, J. C., Bockus, W. W., Feng, Y., Chen, P., Qi, L., Sehgal, S. K., Danilova, T. V., Koo, D. H., Friebe, B. and Gill, B. S. (2015). Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease from Elymus tsukushiensis into wheat. Theor. Appl. Genet. 128: 1019–27.
Chen, C., Zhang, X., Li, Y., Zou, B., Xiao, H., Han, Y., Yang, X., Wu, D., Sha, L., Yang, C. and others. (2024). Chromosome-specific painting reveals the Y genome origin and chromosome rearrangements of the St genome in Triticeae. Plant Physiol. 196: 870–82.
Chen, S., Feng, J., Xiong, Y., Xiong, Y., Liu, Y., Zhao, J., Dong Z., Ma X. and Yan, L. (2023). Evaluation and screening of wild Elymus sibiricus L. germplasm resources under salt stress. Agronomy 13: doi:10.3390/agronomy13112675.
Chen, Z., Guan, Y., Han, M., Guo, Y., Zhang, J., Guo, Z., Sun, G. and Yan, X. (2022). Altitudinal patterns in adaptive evolution of genome size and inter-genome hybridization between three Elymus species from the Qinghai–Tibetan plateau. Front. Ecol. Evol. 10:  doi:10.3389/fevo. 2022.923967.
Cui, G., Ji, G., Liu, S., Li, B., Lian, L., He, W. and Zhang, P. (2019). Physiological adaptations of Elymus dahuricus to high altitude on the Qinghai–Tibetan Plateau. Acta Physiol. Plant. 41doi:10. 1007/s11738-019-2904-z.
Dashora, A., Mehta, R., Singh, D. and Singh, S.K. (2022). Genetic variability, association and diversity studies in wheat (Triticum spp. L.). J. Environ. Biol. 43: 390-400.
Dewey, D. R. (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. Gene manipulation in plant improvement: 16th Stadler Genetics Symposium. pp: 209–79.
Dobryakova, K. S. (2017). Allopolyploidy and origin of genomes in the Elymus L. species (a review). Proc. Appl. Bot. Genet. Breed. 178: 127-34.
doi:10.1186/s12870-019-2208-x.
Dong, Z. Z., Fan, X., Sha, L. N., Wang, Y., Zeng, J., Kang, H. Y., Zhang, H. Q., Wang, X. L., Zhang, L. and Ding, C. B. (2015). Phylogeny and differentiation of the St genome in Elymus L. sensu lato (Triticeae; Poaceae) based on one nuclear DNA and two chloroplast genes. BMC Plant Biol. 15: doi: 10.1186/s12870-015-0517-2.
Dou, Q. W., Zhang, T. L. and Tsujimoto, H. (2011). Physical mapping of repetitive sequences and genome analysis in six Elymus species by in situ hybridization. J. Syst. Evol. 49: 347-52.
Fan, X., Sha, L. N., Dong, Z. Z., Zhang, H. Q., Kang, H. Y., Wang, Y. and Zhou, Y.H. (2013). Phylogenetic relationships and Y genome origin in Elymus L. sensu lato (Triticeae; Poaceae) based on single-copy nuclear Acc1 and Pgk1 gene sequences. Mol. Phylogenet. Evol. 69: 919-28.
Fu, J., Miao, Y., Shao, L., Hu, T. and Yang, P. (2016). De novo transcriptome sequencing and gene expression profiling of Elymus nutans under cold stress. BMC Genom. 17: doi:10.1186/s12864-016-3222-0.
Gong, B., Zhu, W., Li, S., Wang, Y., Xu, L., Wang, Y., Zeng, J., Fan, X., Sha, L., Zhang, H. and Kang, H. (2019). Molecular cytogenetic characterization of wheat–Elymus repens chromosomal translocation lines with resistance to Fusarium head blight and stripe rust. BMC Plant Biol. 19:
Hu, Q., Sun, D. and Sun, G. (2015). Molecular phylogeny revealed distinct origin of the Y and St genome in Elymus longearistatus (Triticeae: Poaceae). Mol. Phylogen. Evol. 85: 141–49.
Ibrahim, A. A., Abd-Ellatif, S., Abdel Razik, E. S. and Salem, K. F. M. (2024). Biodiversity of cereal crops and utilization in food and nutritional security. In: Sustainable utilization and conservation of plant genetic diversity. Sustainable development and biodiversity (Eds. Al-Khayri, J.M., Jain, S.M. and Penna, S.). Springer, Singapore. pp: 33-61.
Jia, C., Chen, D., Zhao, X., Fu, X. and Hu, X. (2025). Transgenerational plasticity of Elymus nutans was regulated by multiple factors and not directly related to within-generational plasticity. Plant and Soil 510: 827-40.
Jiang, C., Liu, X., Yang, Z. and Li, G. (2023). Chromosome rearrangement in Elymus dahuricus revealed by ND-FISH and oligo-FISH painting. Plants 12: doi:10.3390/plants12183268.
Jigjidsuren, C., Alimaa, D., Batmunkh, L., Bopp, V. L. and Litvinova, V. S. (2018). The assessment of the adaptation potential of forage crops in the conditions of Mongolian extreme climate. Thesis, Ministry of Agriculture of Russian Federation Krasnoyarsk State Agrarian University, Krasnoyarsk, Russsia. pp: 102-15.
Khan, A., Ali, A., Ullah, Z., Ali, I., Kaushik, P., Alyemeni, M. N., Rasheed, A. and Sher, H. (2022). Exploiting the drought tolerance of wild Elymus species for bread wheat improvement. Front. Plant Sci. 13: doi:10.3389/fpls.2022.982844.
Khrustaleva, L., Kudryavtseva, N., Romanov, D., Ermolaev, A. and Kirov, I. (2019). Comparative Tyramide-FISH mapping of the genes controlling flavor and bulb color in Allium species revealed an altered gene order. Sci. Rep. 9: doi:10.1038/s41598-019-48564-9.
Kroupin, P. Y., Yurkina, A. I., Ulyanov, D. S., Karlov, G. I. and Divashuk, M. G. (2023). Comparative Characterization of Pseudoroegneria libanotica and Pseudoroegneria tauri based on their repeatome peculiarities. Plants 12: doi:10.3390/plants12244169.
Kroupin, P. Yu., Badaeva, E. D., Sokolova, V. M., Chikida, N. N., Belousova, M. K., Surzhikov, S. A., Nikitina, E. A., Kocheshkova, A. A., Ulyanov, D.  S., Ermolaev, A. S., Luong Khuat, T. M., Razumova, O. V., Yurkina, A. I., Karlov, G. I. and Divashuk, M. G. (2022). Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. Front. Plant Sci. 13: doi.org/10.3389/fpls.2022.980764.
Kroupin, P. Yu., Divashuk, M. G. and Karlov, G. I. (2019a). Gene resources of perennial wild cereals involved in breeding to improve wheat crop. Selsk. Biol. 54: 409–25.
Kroupin, P. Yu., Divashuk, M. G. and Karlov, G. I. (2019b). The use of the genetic potential of perennial wild cereals in breeding improvement of wheat (a review). S-kh. Biol. 54: 409-25.
Kumar, A., Choudhary, A., Kaur, H. and Mehta, S. (2022). A walk towards Wild grasses to unlock the clandestine of gene pools for wheat improvement: A review. Plant Stress 3: doi:10. 1016/j.stress.2021.100048.
Lei, Y. T., Zhao, Y. Y., Yu, F., Li, Y. and Dou, Q. W. (2014). Development and characterization of 53 polymorphic genomic-SSR markers in Siberian wildrye (Elymus sibiricus L.). Conserv. Genet. Res. 6: 861–64.
Lei, Y. X., Fan, X., Sha, L. N., Wang, Y., Kang, H. Y., Zhou, Y. H. and Zhang, H. Q. (2022). Phylogenetic relationships and the maternal donor of Roegneria (Triticeae: Poaceae) based on three nuclear DNA sequences (ITS, Acc1, and Pgk1) and one chloroplast region (trnL-F). J. Syst. Evol. 60: 305–18.
Leo, J. (2020). Elymus in South America-an overview, Introductory paper at the Faculty of Landscape Architecture, Horticulture and Crop Production Science. Epsilon, SLU: Sveriges lantbruksuniversitet, Sweden. pp: 42.
Leo, J., Bengtsson, T., Morales, A., Carlsson, A. S. and von Bothmer, R. (2025). Genetic structure analyses reveal multiple origins of Elymus sensu stricto (Poaceae). Genet. Resour. Crop Evol. 72: 167–85.
Li, J., Li, X., Zhang, C., Zhou, Q. and Chen, S. (2024). Phylogeographic analysis reveals extensive genetic variation of native grass Elymus nutans (Poaceae) on the Qinghai-Tibetan plateau. Front. Plant Sci. 15: doi.org/10.3389/fpls.2024.1349641.
Li, J., Tian, H., Ji, W., Zhang, C. and Chen, S. (2023a). inflorescence trait diversity and genotypic differentiation as influenced by the environment in Elymus nutans Griseb. from Qinghai–Tibet Plateau. Agronomy 13: doi:10.3390/agronomy13041004.
Li, J., Zhang, C., Chen, S., Jiang, K., Guan, H. and Liu, W. (2023b). Characterization and application of EST-SSR markers developed from transcriptome sequences in Elymus breviaristatus (Poaceae: Triticeae). Genes. 14: doi: 10.3390/genes14020302.
Li, M. Q., Yang, J., Wang, X., Li, D. X., Zhang, C. B., Tian, Z. H., You, M. H., Bai, S. Q. and Lin. H. H. (2020). Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. J. Plant Physiol. 250:
Li, M. Q., Yang, J., Wang, X., Li, D. X., Zhang, C. B., Tian, Z. H., You, M. H., Bai, S. Q. and Lin. H. H. (2020). Transcriptome profiles identify the common responsive genes to drought stress in two Elymus species. J. Plant Physiol. 250: doi:10.1016/j.jplph.2020.153183. 
Li, P., Bhattarai, S., Peterson, G. W., Coulman, B., Schellenberg, M. P., Biligetu, B. and Fu, Y. B (2018). Genetic diversity of northern wheatgrass (Elymus lanceolatus ssp. lanceolatus) as revealed by genotyping-by-sequencing. Diversity 10: doi:10.3390/D10020023
Liu, Q., Ge, S., Tang, H., Zhang, X., Zhu, G. and Lu, B. R. (2006). Phylogenetic relationships in Elymus (Poaceae: Triticeae) based on the nuclear ribosomal internal transcribed spacer and chloroplast trnL‐F sequences. New Phytol. 170: 411-20.
Liu, Q.-L., Liu, L., Ge, S., Fu, L.-P., Bai, S.-Q., Lv, X., Wang, Q.-K., Chen, W., Wang, F.-Y. and Wang, L.-H., (2022a). Endo-allopolyploidy of autopolyploids and recurrent hybridization—A possible mechanism to explain the unresolved Y-genome donor in polyploid Elymus species (Triticeae: Poaceae). J. Syst. Evol. 60: 344–60.
Liu, R. J., Lu, X. W. and Dou, Q. W. (2018). Development of SSR markers in Elymus nutans based on reduced-representation genome sequencing. Mol. Plant Breed. 16: 1888–94. 
Liu, R., Wang, R. R. C., Yu, F., Lu, X. and Dou, Q. (2017). Characterization of genome in tetraploid StY species of Elymus (Triticeae: Poaceae) using sequential FISH and GISH. Genome. 60: 679–85.
Liu, X., Wang, P., An, Y., Wang, C. M., Hao, Y., Zhou, Y., Zhou, Q. and Wang, P. (2022b). Endodermal apoplastic barriers are linked to osmotic tolerance in meso-xerophytic grass Elymus sibiricus. Front. Plant Sci. 13: doi:10.3389/fpls.2022.1007494.
Liu, Y., Ding, J., Wu, C., Song, W., Zhao, X., Zhao, H., Qu, Y., Jin, H., Zhang, R. and Zhang, Y. (2025). Characterization of a natural accession of Elymus sibiricus with in situ hybridization and agronomic evaluation. Plants 14: doi:10.3390/plants14010075.
Liu, Z. and He, Z. (2024). Ecological and agricultural significance of Triticeae: from forage to food security. Triticeae Genom. Genet. 15: 111–120. 
Long, J., Dong, M., Wang, C. and Miao, Y. (2023). Effects of drought and salt stress on seed germination and seedling growth of Elymus nutans. Peer J. 11: doi.org/10.7717/peerj.15968.
Long, J., Gao, X. and Miao, Y. (2025). Effects of environmental factors on the phenotypic traits and seed element accumulation of wild Elymus nutans in Tibet. Sci. Rep. 15doi: 10.1038/s41598-025-85415-2.
Löve, Á. (1984). Conspectus of the Triticeae. Feddes. Rep. 95: 425–521.
Lu, B. (1994). The genus Elymus L. in Asia. Taxonomy and biosystematics with special reference to genomic relationships. Thesis, In Proceedings of the 2nd International Triticeae Symposium, Logan, UT, USA, 20–24 June 1994, pp: 29–34.
Lu, B. R. (1993). Biosystematic investigations of Asiatic wheatgrasses-Elymus L. (Triticeae; Poaceae). Ph.D. dissertation, Swedish University of Agricultural Science, Svalöv. pp. 57.
Lu, B. R. and Bothmer, R. von, (1989). Cytological studies of a dihaploid and hybrid from intergeneric cross Elymus shandongensis x Triticum aestivum [chromosome pairing]. Hereditas. 111: 231–38. doi:10.1111/j.1601-5223.1990.tb00401.x
Lu, B. R. and Liu, Q. (2005). The possible origin of the" StY"-genome Elymus: A new mechanism of allopolyproidy in plants. Czech J. Genet. Plant Breed. 41: 1–58.
Lucía, V., Martínez‐Ortega, M. M., Rico, E. and Anamthawat‐Jónsson, K. (2019). Discovery of the genus Pseudoroegneria (Triticeae, Poaceae) in the Western Mediterranean on exploring the generic boundaries of Elymus. J. Syst. Evol. 57: 23-41.
Ma, X., Chen, S., Zhang, X., Bai, S. and Zhang, C. (2012). Assessment of worldwide genetic diversity of Siberian wild rye (Elymus sibiricus L.) germplasm based on gliadin analysis. Molecules 17: 4424–34.
Mason-Gamer, R. J. (2013). Phylogeny of a genomically diverse group of Elymus (Poaceae) allopolyploids reveals multiple levels of reticulation. PLoS One 8doi:10.1371/journal. pone.0078449.
Mason-Gamer, R. J., Burns, M. M. and Naum, M. (2010). Phylogenetic relationships and reticulation among Asian Elymus (Poaceae) allotetraploids: Analyses of three nuclear gene trees. Mol. Phylogen. Evol. 54: 10–22.
Mason-Gamer, R. J., Orme, N. L. and Anderson, C. M. (2002). Phylogenetic analysis of North American Elymus and the monogenomic Triticeae (Poaceae) using three chloroplast DNA data sets. Genome. 45: 991–1002.
Molnár-Láng, M., Ceoloni, C. and Doležel, J. (2015). Alien introgression in wheat. Springer: Cham, Switzerland. pp. 387.
Motsnyi, I. and Kulbida, M. (2018). Inheritance of traits controlled by odd chromosomes using data on transmission of monosomic addition St chromosome of the Elymus sibiricus genome. Cytol. Genet. 52: 260–68.
Motsnyi, I. I., Halaiev, O. V., Alіeksіeіeva, T. G., Chebotar, G. O., Chebotar, S. V., Betekhtin, A., Hasterok, R., Armonienė, R. and Rahmatov, M. (2024). Cytogenetic and molecular identification of novel wheat-Elymus sibiricus addition lines with resistance to leaf rust and the presence of leaf pubescence trait. Front. Plant Sci. 15: doi:10.3389/fpls.2024.1482211.
Motsnyi, I., Petrova, I. and Chebotar, S. (2016). Inheritance and effects of addition chromosome of Elymus sibiricus St genome with alien characters from the amphiploid elytricum fertile. Factors in Experimental Evolution of Organisms. Collection of Scientific Papers of USGB. 18: 121–26.
Nikitina, E., Kuznetsova, V., Kroupin, P., Karlov, G. I. and Divashuk, M. G. (2020). Development of specific Thinopyrum cytogenetic markers for wheat-wheatgrass hybrids using sequencing and qPCR data. Int. J. Mol. Sci. 21: doi:10.3390/ijms21124495.
Okito, P., Mott, I. W., Wu, Y. and Wang, R. R. C. (2009).  AY genome specific STS marker in Pseudoroegneria and Elymus species (Triticeae: Gramineae). Genome 52: 391–400.
Oliver, A. G., Harnish, K. and Sun, G. (2011). Genomic constitution and phylogenetic position of several New Zealand Triticeae species revealed by two single copy nuclear genes. Aust. J. Bot. 59: 1-6.
Petersen, G., Seberg, O. and Salomon B. (2011). The origin of the H, St, W, and Y genomes in allotetraploid species of Elymus L. and Stenostachys Turcz. n (Poaceae: Triticeae). Plant Syst. Evol. 291: 197-210.
Punina, E. O., Machs, E. M., Nosov, N. N., Gnutikov, A. A. and Rodionov, A. V. (2023). NGS-sequencing (Illumina) as a tool for determining the genomic composition and taxonomic affiliation of species and interspecific hybrids on the example of Hordeeae grasses. Probl. Bot. South. Sib. Mong. 22: 276-86.
Sakamoto, S. (1964). A polyhaploid plant of Agropyron tsukushiense var. Transiens Ohwi found in a state of nature. An. Rep. Nat. Inst. Genet. 14: 65-66.
Shen, W., Liu, B., Guo, J., Yang, Y., Li, X., Chen, J. and Dou, Q. (2024). Chromosome-scale assembly of the wild cereal relative Elymus sibiricus. Sci. Data 11: doi:10.1038/s41597-024-03622-4.
Simonenko, V., Motsny, I., Sechnyak, A. and Kulbida, M. (1998). The use of wheat-alien and Aegilops-rye amphiploids for introgression of genetic material to wheat. Euphytica 100: 313–21.
Song, H., Nan, Z. and Tian, P. (2015). Phylogenetic analysis of Elymus (Poaceae) in western China. Genet. Mol. Res. 14: 12228–39.
Sthapit, S. R., Marlowe, K., Covarrubias, D. C., Ruff, T. M., Eagle, J. D., McGinty, E. M. and See, D. R. (2020). Genetic diversity in historical and modern wheat varieties of the US Pacific Northwest. Crop Sci. 60: 3175-90.
Sun, G. (2014). Molecular phylogeny revealed complex evolutionary process in Elymus species. J. Syst. Evol. 52: 706-11.
Sun, G. and Komatsuda, T. (2010). Origin of the Y genome in Elymus and its relationship to other genomes in Triticeae based on evidence from elongation factor G (EF-G) gene sequences. Mol. Phyl. Evol. 56: 727-733. doi:10.1016/j.ympev.2010.03.037.
Sun, S. G., Ni Yan, N. Y. and Daley, T. (2008). Molecular phylogeny of RPB2 gene reveals multiple origin, geographic differentiation of H genome, and the relationship of the Y genome to other genomes in Elymus species. Elsevier 46: 897–907.
Svitashev, S., Salomon, B., Bryngelsson, T. and Bothmer, R. von. (1996). A study of 28 Elymus species using repetitive DNA sequences. Genome 39: 1093–1101.
Tan, L., Huang, Q. X., Song, Y., Wu, D. D., Cheng, Y. R., Zhang, C. B., Sha, L. N and Zhou, Y. H. (2022). Biosystematics studies on Elymus breviaristatus and Elymus sinosubmuticus (Poaceae: Triticeae). BMC Plant Biol. 22: doi:10.1186/s12870-022-03441-y.
Tan, L., Wu, D. D., Zhang, C. B., Cheng, Y. R., Sha, L. N., Fan, X., Kang, H. Y., Wang, Y., Zhang, H. Q. and Escudro, M., (2024). Genome constitution and evolution of Elymus atratus (Poaceae: Triticeae) inferred from cytogenetic and phylogenetic analysis. Genes Genom. 46: 589–99.
Thormann, I., Reeves, P., Thumm, S., Reilley, A., Engels, J. M. M., Biradar, C. M. and Richards, C. M. (2018). Changes in barley (Hordeum vulgare L. subsp. vulgare) genetic diversity and structure in Jordan over a period of 31 years. Plant Genet. Res. 16: 112-26.
Wang, F., Wei, H., Wang, Q., Yang, Y., Zhu, W., Xu, L., Wu, D., Cheng, Y., Zhang, Y. and Wang, Y., (2025). Chromosome telosome 1StL from Elymus repens carries a novel locus Fhb. Er-1StL conferring resistance to Fusarium head blight in wheat. Res. Square. pp: 18-24.
Wang, F., Zhao, X., Yu, X., Zhu, W., Xu, L., Cheng, Y., Zhang, Y., Wang, Y., Zeng, J. and Fan, X. (2024). Identification and transfer of resistance to Fusarium head blight from Elymus Repens chromosome arm 7StL into wheat. J. Integr. Agric. 24: 4138-52.
Wang, X., Chen, P., Liu, D., Zhang, P., Zhou, B., Friebe, B. and Gill, B. (2001). Molecular cytogenetic characterization of Roegneria ciliaris chromosome additions in common wheat. Theor. Appl. Genet. 102: 651–57.
Wu, D., Zhu, X., Tan, L., Zhang, H., Sha, L., Fan, X., Wang, Y., Kang, H., Lu, J. and Zhou, Y. (2021). Characterization of each St and Y genome chromosome of Roegneria grandis based on newly developed FISH markers. Cyt. Gen. Res. 161: 213–22.
Xie, J., Zhao, Y., Yu, L., Liu, R. and Dou, Q. (2020). Molecular karyotyping of Siberian wild rye (Elymus sibiricus L.) with oligonucleotide fluorescence in situ hybridization (FISH) probes. PLoS One 15: doi:10.1371/journal.pone.0227208.
Xie, W., Zhang, J., Zhao, X., Zhang, Z. and Wang, Y. (2017). Transcriptome profiling of Elymus sibiricus, an important forage grass in Qinghai-Tibet plateau, reveals novel insights into candidate genes that potentially connected to seed shattering. BMC Plant Biol. 17: doi:10.1186/s12870-017-1026-2.
Xiong, Y., Xiong, Y. L., Jia, X. J., Zhao, J. M., Yan, L. J., Sha, L. N., Liu, L., Yu, Q.Q., Lei, X., Bai, S. Q. and Ma, X. (2024b). Divergence in Elymus sibiricus is related to geography and climate oscillation: A new look from pan‐chloroplast genome data. J. Syst. Evol. 62: 794-808.
Xiong, Y., Xiong, Y., Yi, L., Su, X., Zhao, J., Bai, S., Dong, Z., Zhou, J., Yu, Q., Li, D., Yan, L., Lei, X. and Ma, X. (2024a). Discovery of the ethylene response factors in Elymus sibiricus on a transcriptome-wide scale and the beneficial function of EsiERF285 in combating drought and heat stress. Ind. Crops Prod. 210: 118170.
Xiong, Y., Yu, Q., Xiong, Y., Zhao, J., Lei, X., Liu, L., Liu, W., Peng, Y., Zhang, J., Li, D., Bai, S. and Ma, X. (2022). The complete mitogenome of Elymus sibiricus and insights into its evolutionary pattern based on simple repeat sequences of seed plant mitogenomes. Front. Plant Sci. 12: doi:10.3389/fpls.2021.802321.
Xiong, Y., Yuan, S., Xiong, Y., Li, L., Peng, J., Zhang, J., Fan, X., Jiang, C., Sha, L. and Wang, Z. (2025). Analysis of allohexaploid wheatgrass genome reveals its Y haplome origin in Triticeae and high-altitude adaptation. Nat. Commun. 16: doi:10.1038/s41467-025-58341-0.
Xiong, Y.I., Lei, X., Bai, S., Xiong, Y., Liu, W., Wu, W., Yu, Q., Dong, Z., Yang, J. and Ma, X. (2021). Genomic survey sequencing, development and characterization of single-and multi-locus genomic SSR markers of Elymus sibiricus L. BMC Plant Biol. 21: doi:10.1186/s12870-020-02770-0.
Yan, C., Sun, G. and Sun, D. (2011). Distinct origin of the Y and St genome in Elymus species: Evidence from the analysis of a large sample of St genome species using two nuclear genes. PLoS One 6: doi:10.1371/journal.pone.0026853.
Yang, C., Zhang, H., Chen, W., Kang, H., Wang, Y., Sha, L., Fan, X., Zeng, J. and Zhou, Y. (2017). Genomic constitution and intergenomic translocations in the Elymus dahuricus complex revealed by multicolor GISH. Genome 60: 510-17.
Yang, Y.W., Chi, D., Cao, W., Zeng, J., Xue, A., Han, F.P. and Fedak, G. (2015). Monitoring the introgression of E genome chromosomes into triticale using multicolor GISH. Caryologia 68: 317-22.  
Yen, C. and Yang, J. (2022). Biosystematics of genus Elymus. In Biosystematics of Triticeae: Volume V. Genera: Campeiostachys, Elymus, Pascopyrum, Lophopyrum, Trichopyrum, Hordelymus, Festucopsis, Peridictyon, and Psammopyrum. Springer, Singapore: 67–416.
Yen, C., Yang, J. L. and Baum B. R. (2005). Douglasdeweya: a new genus with a new species and a new combination (Triticeae: Poaceae). Can. J. Bot. 83: 413-19. 
Yen, C., Yang, J. L. and Baum, B. R. (2009). Synopsis of Leymus Hochst. (Triticeae: Poaceae). J. Sys. Evol. 47: 67-86.
Yu, Q. Q., Liu, Z. C., Xiong, Y. and Ma, X. (2021). Comparative and phylogenetic analysis of complete chloroplast genome sequences of two wildrye grasses Elymus sibiricus and E. nutans (Triticeae, Poaceae). Int. J. Agric. Biol. 25: 1203-12.
Yu, Q., Xiong, Y., Su, X., Xiong, Y., Dong, Z., Zhao, J., Shu, X., Bai, S., Lei, X., Yan, L. and Ma., X. (2022). Comparative metabolomic studies of Siberian wildrye (Elymus sibiricus L.): a new look at the mechanism of plant drought resistance. Int. J. Mol. Sci. 24: doi:10.3390/ijms24010452.
Zhang, Q., Li, S., Guo, S. and Tian, H. (2024). Morphology and SSR markers reveal the genetic diversity of Elymus species germplasm in Northwestern China. Genet. Resour. Crop Evol. 71: 2091-103.
Zhang, Z., Xie, W., Zhang, J., Wang, N., Zhao, Y., Wang, Y. and Bai, S. (2019a). Construction of the first high-density genetic linkage map and identification of seed yield-related QTLs and candidate genes in Elymus sibiricus, an important forage grass in Qinghai-Tibet Plateau. BMC Genom. 20: doi:10.1186/s12864-019-6254-4.
Zhang, Z., Xie, W., Zhao, Y., Zhang, J., Wang, N., Ntakirutimana, F., Yan, J. and Wang, Y (2019b). EST-SSR marker development based on RNA-sequencing of E. sibiricus and its application for phylogenetic relationships analysis of seventeen Elymus species. BMC Plant Biol. 19: doi:10.1186/s12870-019-1825-8.
Zhang, Z., Zheng, Y., Zhang, J., Wang, N., Wang, Y., Liu, W., Bai, S. and Xie, W. (2022a) High-altitude genetic selection and genome-wide association analysis of yield-related traits in Elymus sibiricus L. using SLAF sequencing. Front. Plant Sci. 13: doi:10.3389/fpls.2022.874409.
Zhang, Z., Zheng, Y., Zhang, J., Wang, N., Wang, Y., Liu, W., Bai, S. and Xie, W. (2022b). High-altitude genetic selection and genome-wide association analysis of yield-related traits in Elymus sibiricus L. using SLAF sequencing. Front. Plant Sci. 13:  doi:10.3389/fpls.2022.874409.
Zhao, X., Xie, W., Zhang, J., Zhang, Z. and Wang, Y. (2017a). Histological characteristics, cell wall hydrolytic enzymes activity and candidate genes expression associated with seed shattering of Elymus sibiricus accessions. Front. Plant Sci. 8: doi:10.3389/fpls.2017.00606.
Zhao, X., Zhang, J., Zhang, Z., Wang, Y. and Xie, W. (2017b). Hybrid identification and genetic variation of Elymus sibiricus hybrid populations using EST-SSR markers. Hereditas 154: doi:10.1186/s41065-017-0053-1.
Zheng, Y., Zhang, Z., Wan, Y., Tian, J. and Xie, W. (2020). Development of EST-SSR markers linked to flowering candidate genes in Elymus sibiricus L. based on RNA sequencing. Plants. 9: doi:10.3390/plants9101371.
Zhou, J., Li, Y., Wang, X., Liu, Y., David-Schwartz, R., Weissberg, M., Qiu, S., Guo, Z.  and Yang, F. (2022). Analysis of Elymus nutans seed coat development elucidates the genetic basis of metabolome and transcriptome underlying seed coat permeability characteristics. Front. Plant Sci. 13: doi:10.3389/fpls.2022.970957.
Zhou, Q., Luo, D., Ma, L., Xie, W., Wang, Y., Wang, Y. and Liu, Z. (2016). Development and cross-species transferability of EST-SSR markers in Siberian wildrye (Elymus sibiricus L.) using Illumina sequencing. Sci. Rep. 6: doi:10.3390/plants9101371.
Zhuoma, P., Tondrob, D., Qunpei, T., Fu, J. and Dan, S. (2024). Muti-omics revealed the mechanisms of MT-conferred tolerance of Elymus nutans Griseb. to low temperature at XiZang. BMC Plant Biol. 24: doi:10.1186/s12870-024-05583-7.
Zuo, H., Wu, P., Wu, D. and Sun, G. (2015). Origin and reticulate evolutionary process of wheatgrass Elymus trachycaulus (Triticeae: Poaceae). PLoS One 10doi:10.1371/journal.pone.0125417.

Global Footprints