Loading...

Assessing the distribution of Litsea cubeba in Gia Lai Province, Vietnam through the MaxEnt Model


Citation :- Assessing the distribution of Litsea cubeba in Gia Lai Province, Vietnam through the MaxEnt Model. Res. Crop. 26: 721-727
HUNG CUONG DANG, DANG HOI NGUYEN AND NGOC HUYEN DANG danghungcuong@gmail.com
Address : Institute of Tropical Ecology, Joint Vietnam-Russia Tropical Science and Technology Research Center, 63 Nguyen Van Huyen Str., Nghia Do, Hanoi, Vietnam
Submitted Date : 12-11-2025
Accepted Date : 26-11-2025

Abstract

Litsea cubeba, a valuable tree cultivated for essential oil, medicinal purposes, and spices, is gaining attention for development in the Central Highlands of Vietnam. Accurate spatial planning for its cultivation requires a precise assessment of suitable land areas. This study aimed to model the potential distribution of L. cubeba in Gia Lai Province using the Maximum Entropy (MaxEnt) algorithm, renowned for its effectiveness with limited species occurrence data. The model was trained with 195 species presence locations and 19 bioclimatic variables from WorldClim 2.1. Model performance was evaluated through 15 cross-validation replicates, assessed by the Area Under the Curve (AUC), True Skill Statistic (TSS), and ROC curves. The results demonstrated high model accuracy, with mean training and validation AUC values of 0.926 and 0.896, respectively. The most influential variable was precipitation of the driest quarter (Bio17), contributing 66.6% and exhibiting the highest gain in Jackknife tests. Other significant variables included diurnal temperature range (Bio02) and precipitation of the driest month (Bio14). The resulting suitability map was classified into four levels. The findings indicate that only approximately 10.25% (about 1,589 km²) of the province's area is suitable for Litsea cubeba, with highly suitable zones (∼1-2%) concentrated on the plateau peaks. This research provides a critical scientific foundation for land-use planning and the sustainable expansion of Litsea cubeba cultivation in the region.

Keywords

Bioclimatic predictors Litsea cubeba MaxEnt potential distribution

References

Ahmadi, M., Hemami, M. R., Kaboli, M. and Shabani, F. (2023). MaxEnt brings comparable results when the input data are being completed; Model parameterization of four species distribution models. Ecol. Evol. 13: doi:10.1002/ece3.9827.
Borotová, P., Galovičová, L., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Kowalczewski, P., Bakay, L. and Kačániová, M. (2022). Role of Litsea cubeba essential oil in agricultural products safety: antioxidant and antimicrobial applications. Plants (Basel) 11: doi:10.3390/plants11111504.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E. and Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17: 43-57. doi:10.1111/j.1472-4642.2010.00725.x.
Kamle, M., Mahato, D. K., Lee, K. E., Bajpai, V. K., Gajurel, P. R., Gu, K. S. and Kumar, P. (2019). Ethnopharmacological properties and medicinal uses of Litsea cubeba. Plants (Basel) 8: doi:10.3390/plants8060150.
Matsane, W., Dhau, I., Mothapo, M. C. and Thamaga, K. H. (2025). Modelling the potential distribution of african wormwood (Artemisia afra) using a machine learning algorithm-based approach (MaxEnt) in Sekhukhune district, South Africa. Ecol. Evol. 15: doi:10.1002/ece3.71866.
Shan, Y., Shen, H., Huang, L., Hamezah, H. S., Han, R., Ren, X., Zhang, C. and Tong, X. (2025). Optimized MaxEnt analysis revealing the change of potential distribution area of Lygodium japonicum in China driven by global warming. Front. Plant Sci. 16: doi:10.3389/fpls.2025.1601956.
Su, Q., Du, Z., Luo, Y., Zhou, B., Xiao, Y. and Zou, Z. (2024). MaxEnt Modeling for predicting the potential geographical distribution of Hydrocera triflora since the last interglacial and under future climate scenarios. Biology (Basel) 13: doi:10.3390/biology13090745.
Tesfamariam, B. G., Gessesse, B. and Melgani, F. (2022). MaxEnt-based modeling of suitable habitat for rehabilitation of Podocarpus forest at landscape-scale. Environ. Syst. Res. 11: doi:10.1186/s40068-022-00248-6.
Wang, M. and Guan, Q. (2023). Prediction of potential suitable areas for Broussonetia papyrifera in China using the MaxEnt model and CIMP6 data. J. Plant Ecol. 16: doi:10.1093/jpe/rtad006.
Wang, X., Ning, X., Liao, G., Fan, G., Shi, X., Fu, D., Wang, Z., Chen, S. and Wang, J. (2023). Phenotypic diversity of Litsea cubeba in Jiangxi China and the identification of germplasms with desirable characteristics. Forests 14: doi:10.3390/f14122283.
Wang, Y., Ren, X., Wang, K., Lin, W., Wang, P., Liu, Z., Zhang, H. and Zhou, N. (2025). Maxent model-based prediction of the potential distribution of Fritillaria taipaiensis P. Y. Li. Sci. Rep. 15: doi:10.1038/s41598-025-01682-z.
Xie, M., Song, X., Zhang, X., Ma, Y., Song, Z., Li, F., Li, W., Fan, L. and Ma, H. (2025). Suitability mapping of native tree species in dry-hot valleys of Yunnan based on InVEST-MaxEnt coupled modeling: model validation framework with native tree species actual distribution and seed germination. Front. Plant Sci. 16: doi:10.3389/fpls.2025.1577623.
Yahaya, I. I., Wang, C., Ogbue, C. P. and Yahaya, M. S. (2025). Remote sensing and MaxEnt modeling of canopy and non-canopy forest tree species in Taraba State for biodiversity conservation and ecosystem management. Front. For. Glob. Change 8: doi:10.3389/ffgc.2025.1631859.
Zhou, Y., Zhang, Z., Zhu, B., Cheng, X., Yang, L., Gao, M. and Kong, R. (2021). MaxEnt modeling based on CMIP6 models to project potential suitable zones for Cunninghamia lanceolata in China. Forests 12: doi:10.3390/f12060752.

 
 

Global Footprints