Abbott, W. S. (1925). A Method of computing the effectiveness of an insecticide. J. Econ. Ento. 18: 265-67.
Abdel-Moghies, A. H., El-Sehrawy, M. H., Zakaria, A. E. and Fahmy, S. M. (2024). In vivo application of potent probiotics for enhancing potato growth and controlling Ralstonia solanacearum and Fusarium oxysporum infections. Antonie van Leeuwenhoek 117: doi:10.1007/s10482-024-01928-2.
Al Raish, S. M., Sourani, O. M. and Abu-Elsaoud, A. M. (2025). Plant growth-promoting microorganisms as biocontrol agents: mechanisms, challenges, and future prospects. Appl. Microbiol. 5: doi:10.3390/applmicrobiol5020044.
Anckaert, A., Arguelles Arias, A., Hoff, G., Calonne-Salmon, M., Declerck, S. and Ongena, M. (2021). The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Microb. Bioprot. for Pl. Dis. Manag., Vol. 1 (Eds. A. Anckaert and J. Cawoy). Springer, Cham, Switzerland. pp: 245-72.
Bavrina, A. P. (2021). Modern rules for applying parametric and non-parametric criteria in the statistical analysis of biomedical data. Med. Almanac 1: 64-73. (In Russian).
Duggal, K., Kurian, N. K., Singh, R., Sharma, S. and Pandey, R. P. (2025). Plant growth-promoting bacteria from the Thar desert for yield augmentation in wheat (Triticum aestivum L.). Crop Res. 60: 117-24.
Ehinmitan, E., Losenge, T., Mamati, E., Ngumi, V., Juma, P. and Siamalube, B. (2024). BioSolutions for green agriculture: unveiling the diverse roles of plant growth-promoting rhizobacteria. Int. J. Microbiol. 2024: doi:10.1155/2024/6181491.
Galymbek, K., Madenova, A. and Bakirov, S. (2024). Phytosanitary diagnosis of apple fungal diseases in Almaty region. Res. Crop. 25: 499-508.
Gao, Z. and Zhao, J. (2025). Bacillus velezensis G-1 lipopeptides and genomics reveal biocontrol and probiotic traits against postharvest rot caused by Alternaria solani and A. alternata. Food Microbiol. 119: doi:10.1016/j.fm.2025.104928.
Jin, P., Chu, L., Xuan, Z., Lin, Z., Fang, Y., Pan, X. and Miao, W. (2024). Bacillus velezensis, a new valuable source of bioactive molecules within plant microbiomes and natural weapons for the biocontrol of plant pathogens. Trop. Plants. 4: 1-12.
Kapadiya, I. B. and Jagadeesha, K. (2024). Evaluation of different biocontrol agents against collar rot (Sclerotium rolsii Sacc.) of chickpea under pot condition. Farm. Manage. 9: 48-51.
Kenfaoui, J., Dutilloy, E., Benchlih, S., Lahlali, R., Ait-Barka, E. and Esmaeel, Q. (2024). Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl. Microbiol. Biotechnol. 108: 439-58.
Köhl, J., Scheer, C., Holb, I. J., Masny, S. and Molhoek, W. (2015). Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Dis. 99: 535-43.
Leconte, A., Tournant, L., Muchembled, J., Paucellier, J., Héquet, A., Deracinois, B. and Coutte, F. (2022). Assessment of lipopeptide mixtures produced by Bacillus subtilis as biocontrol products against apple scab (Venturia inaequalis). Microorganisms 10: doi:10.3390/microorganisms10091810.
Li, M. S. M., Piccoli, D. A., McDowell, T., MacDonald, J., Renaud, J. and Yuan, Z. C. (2021). Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. BMC Biotechnol. 21: doi:10.1186/s12896-021-00690-x.
Marzec-Grządziel, A. and Gałązka, A. (2023). Sequencing of the whole genome of a bacterium of the genus Achromobacter reveals its potential for xenobiotics biodegradation. Agriculture 13: doi:10.3390/agriculture13081519.
Methodical Guidelines (2022). Methodical guidelines for experimental evaluation of phytopathogenic fungus control measures. Ministry of Agriculture of Russia, Moscow. (In Russian).
Naqqash, T., Imran, A., Hameed, S., Shahid, M., Majeed, A., Iqbal, J. and Malik, K. A. (2020). First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci. Rep. 10: doi:10.1038/s41598-020-69782-6.
Okoro, C. A., El-Hasan, A. and Voegele, R. T. (2024). Integrating biological control agents for enhanced management of apple scab (Venturia inaequalis): insights, risks, challenges, and prospects. Agrochemicals 3: 118-46.
Rancāne, R., Valiuškaitė, A., Zagorska, V., Komašilovs, V. and Rasiukevičiūtė, N. (2023). The overall environmental load and resistance risk caused by long-term fungicide use to control Venturia inaequalis in apple orchards in Latvia. Plants 12: doi:10.3390/plants12030450.
Rashad, E. M., Shaheen, D. M., Al-Askar, A. A., Ghoneem, K. M., Arishi, A. A., Hassan, E. S. A. and Saber, W. I. (2022). Seed endophytic Achromobacter sp. F23KW as a promising growth promoter and biocontrol of Rhizoctonia root rot of fenugreek. Molecules 27: doi:10.3390/molecules27175546.
Sun, Y., Ran, Y., Yang, H., Mo, M. and Li, G. (2023). Volatile metabolites from Brevundimonas diminuta and nematicidal esters inhibit Meloidogyne javanica. Microorganisms 11: doi:10.3390/microorganisms11040966.
Švara, A., De Storme, N., Carpentier, S., Keulemans, W. and De Coninck, B.2024). Phenotyping, genetics, and “omics” approaches to unravel and introgress enhanced resistance against apple scab (Venturia inaequalis) in apple cultivars (Malus domestica). Hortic. Res. 11: doi:10.1093/hr/uhae002.
Weber, R. W. S., Busch, R. and Wesche, J. (2025). Spatial and temporal aspects of fungicide resistance in Venturia inaequalis (apple scab) populations in northern Germany. BioTech. 14: doi:10.3390/biotech14020044.
Abdel-Moghies, A. H., El-Sehrawy, M. H., Zakaria, A. E. and Fahmy, S. M. (2024). In vivo application of potent probiotics for enhancing potato growth and controlling Ralstonia solanacearum and Fusarium oxysporum infections. Antonie van Leeuwenhoek 117: doi:10.1007/s10482-024-01928-2.
Al Raish, S. M., Sourani, O. M. and Abu-Elsaoud, A. M. (2025). Plant growth-promoting microorganisms as biocontrol agents: mechanisms, challenges, and future prospects. Appl. Microbiol. 5: doi:10.3390/applmicrobiol5020044.
Anckaert, A., Arguelles Arias, A., Hoff, G., Calonne-Salmon, M., Declerck, S. and Ongena, M. (2021). The use of Bacillus spp. as bacterial biocontrol agents to control plant diseases. In: Microb. Bioprot. for Pl. Dis. Manag., Vol. 1 (Eds. A. Anckaert and J. Cawoy). Springer, Cham, Switzerland. pp: 245-72.
Bavrina, A. P. (2021). Modern rules for applying parametric and non-parametric criteria in the statistical analysis of biomedical data. Med. Almanac 1: 64-73. (In Russian).
Duggal, K., Kurian, N. K., Singh, R., Sharma, S. and Pandey, R. P. (2025). Plant growth-promoting bacteria from the Thar desert for yield augmentation in wheat (Triticum aestivum L.). Crop Res. 60: 117-24.
Ehinmitan, E., Losenge, T., Mamati, E., Ngumi, V., Juma, P. and Siamalube, B. (2024). BioSolutions for green agriculture: unveiling the diverse roles of plant growth-promoting rhizobacteria. Int. J. Microbiol. 2024: doi:10.1155/2024/6181491.
Galymbek, K., Madenova, A. and Bakirov, S. (2024). Phytosanitary diagnosis of apple fungal diseases in Almaty region. Res. Crop. 25: 499-508.
Gao, Z. and Zhao, J. (2025). Bacillus velezensis G-1 lipopeptides and genomics reveal biocontrol and probiotic traits against postharvest rot caused by Alternaria solani and A. alternata. Food Microbiol. 119: doi:10.1016/j.fm.2025.104928.
Jin, P., Chu, L., Xuan, Z., Lin, Z., Fang, Y., Pan, X. and Miao, W. (2024). Bacillus velezensis, a new valuable source of bioactive molecules within plant microbiomes and natural weapons for the biocontrol of plant pathogens. Trop. Plants. 4: 1-12.
Kapadiya, I. B. and Jagadeesha, K. (2024). Evaluation of different biocontrol agents against collar rot (Sclerotium rolsii Sacc.) of chickpea under pot condition. Farm. Manage. 9: 48-51.
Kenfaoui, J., Dutilloy, E., Benchlih, S., Lahlali, R., Ait-Barka, E. and Esmaeel, Q. (2024). Bacillus velezensis: a versatile ally in the battle against phytopathogens-insights and prospects. Appl. Microbiol. Biotechnol. 108: 439-58.
Köhl, J., Scheer, C., Holb, I. J., Masny, S. and Molhoek, W. (2015). Toward an integrated use of biological control by Cladosporium cladosporioides H39 in apple scab (Venturia inaequalis) management. Plant Dis. 99: 535-43.
Leconte, A., Tournant, L., Muchembled, J., Paucellier, J., Héquet, A., Deracinois, B. and Coutte, F. (2022). Assessment of lipopeptide mixtures produced by Bacillus subtilis as biocontrol products against apple scab (Venturia inaequalis). Microorganisms 10: doi:10.3390/microorganisms10091810.
Li, M. S. M., Piccoli, D. A., McDowell, T., MacDonald, J., Renaud, J. and Yuan, Z. C. (2021). Evaluating the biocontrol potential of Canadian strain Bacillus velezensis 1B-23 via its surfactin production at various pHs and temperatures. BMC Biotechnol. 21: doi:10.1186/s12896-021-00690-x.
Marzec-Grządziel, A. and Gałązka, A. (2023). Sequencing of the whole genome of a bacterium of the genus Achromobacter reveals its potential for xenobiotics biodegradation. Agriculture 13: doi:10.3390/agriculture13081519.
Methodical Guidelines (2022). Methodical guidelines for experimental evaluation of phytopathogenic fungus control measures. Ministry of Agriculture of Russia, Moscow. (In Russian).
Naqqash, T., Imran, A., Hameed, S., Shahid, M., Majeed, A., Iqbal, J. and Malik, K. A. (2020). First report of diazotrophic Brevundimonas spp. as growth enhancer and root colonizer of potato. Sci. Rep. 10: doi:10.1038/s41598-020-69782-6.
Okoro, C. A., El-Hasan, A. and Voegele, R. T. (2024). Integrating biological control agents for enhanced management of apple scab (Venturia inaequalis): insights, risks, challenges, and prospects. Agrochemicals 3: 118-46.
Rancāne, R., Valiuškaitė, A., Zagorska, V., Komašilovs, V. and Rasiukevičiūtė, N. (2023). The overall environmental load and resistance risk caused by long-term fungicide use to control Venturia inaequalis in apple orchards in Latvia. Plants 12: doi:10.3390/plants12030450.
Rashad, E. M., Shaheen, D. M., Al-Askar, A. A., Ghoneem, K. M., Arishi, A. A., Hassan, E. S. A. and Saber, W. I. (2022). Seed endophytic Achromobacter sp. F23KW as a promising growth promoter and biocontrol of Rhizoctonia root rot of fenugreek. Molecules 27: doi:10.3390/molecules27175546.
Sun, Y., Ran, Y., Yang, H., Mo, M. and Li, G. (2023). Volatile metabolites from Brevundimonas diminuta and nematicidal esters inhibit Meloidogyne javanica. Microorganisms 11: doi:10.3390/microorganisms11040966.
Švara, A., De Storme, N., Carpentier, S., Keulemans, W. and De Coninck, B.2024). Phenotyping, genetics, and “omics” approaches to unravel and introgress enhanced resistance against apple scab (Venturia inaequalis) in apple cultivars (Malus domestica). Hortic. Res. 11: doi:10.1093/hr/uhae002.
Weber, R. W. S., Busch, R. and Wesche, J. (2025). Spatial and temporal aspects of fungicide resistance in Venturia inaequalis (apple scab) populations in northern Germany. BioTech. 14: doi:10.3390/biotech14020044.










